Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Immunol ; 24(1): 136-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581712

RESUMO

Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C-γ (PLCγ1) represents a critical step in T cell antigen receptor (TCR) signaling and subsequent thymocyte and T cell responses. PIP2 replenishment following its depletion in the plasma membrane (PM) is dependent on delivery of its precursor phosphatidylinositol (PI) from the endoplasmic reticulum (ER) to the PM. We show that a PI transfer protein (PITP), Nir3 (Pitpnm2), promotes PIP2 replenishment following TCR stimulation and is important for T cell development. In Nir3-/- T lineage cells, the PIP2 replenishment following TCR stimulation is slower. Nir3 deficiency attenuates calcium mobilization in double-positive (DP) thymocytes in response to weak TCR stimulation. This impaired TCR signaling leads to attenuated thymocyte development at TCRß selection and positive selection as well as diminished mature T cell fitness in Nir3-/- mice. This study highlights the importance of PIP2 replenishment mediated by PITPs at ER-PM junctions during TCR signaling.


Assuntos
Proteínas de Transferência de Fosfolipídeos , Transdução de Sinais , Camundongos , Animais , Proteínas de Transferência de Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fosfatidilinositóis/metabolismo
2.
Mol Cell ; 83(14): 2524-2539.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37390818

RESUMO

Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.


Assuntos
Doença de Parkinson , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Canais de Potássio/metabolismo
3.
Cell ; 160(4): 595-606, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25640239

RESUMO

Functional micropeptides can be concealed within RNAs that appear to be noncoding. We discovered a conserved micropeptide, which we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long noncoding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca(2+) uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca(2+) uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca(2+) handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as noncoding.


Assuntos
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , RNA Longo não Codificante/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Músculo Esquelético/citologia , Miocárdio/metabolismo , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , RNA Longo não Codificante/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Alinhamento de Sequência
4.
Nat Immunol ; 12(5): 425-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441934

RESUMO

Clonal deletion of autoreactive B cells is crucial for the prevention of autoimmunity, but the signaling mechanisms that regulate this checkpoint remain undefined. Here we characterize a previously unrecognized Ca(2+)-driven pathway for activation of the kinase Erk, which was proapoptotic and biochemically distinct from Erk activation induced by diacylglycerol (DAG). This pathway required protein kinase C-δ (PKC-δ) and the guanine nucleotide-exchange factor RasGRP and depended on the concentration of the Ca(2+) sensor STIM1, which controls the magnitude of Ca(2+) entry. Developmental regulation of these proteins was associated with selective activation of the pathway in B cells prone to negative selection. This checkpoint was impaired in PKC-δ-deficient mice, which developed B cell autoimmunity. Conversely, overexpression of STIM1 conferred a competitive disadvantage to developing B cells. Our findings establish Ca(2+)-dependent Erk signaling as a critical proapoptotic pathway that mediates the negative selection of B cells.


Assuntos
Linfócitos B/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Glicoproteínas de Membrana/imunologia , Proteína Quinase C-delta/imunologia , Animais , Apoptose/imunologia , Linfócitos B/enzimologia , Canais de Cálcio , Linhagem Celular , Ativação Enzimática/imunologia , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/imunologia , Transdução de Sinais , Molécula 1 de Interação Estromal
5.
Proc Natl Acad Sci U S A ; 117(2): 993-999, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879354

RESUMO

An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2' phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2' phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.


Assuntos
Ritmo Circadiano/fisiologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidases/metabolismo , Estresse Oxidativo/fisiologia , Fatores de Transcrição/metabolismo , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcriptoma
6.
Biochemistry ; 58(25): 2809-2813, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184863

RESUMO

An early step in signaling from activated receptor tyrosine kinases (RTKs) is the recruitment of cytosolic adaptor proteins to autophosphorylated tyrosines in the receptor cytoplasmic domains. Fibroblast growth factor receptor substrate 2α (FRS2α) associates via its phosphotyrosine-binding domain (PTB) to FGF receptors (FGFRs). Upon FGFR activation, FRS2α undergoes phosphorylation on multiple tyrosines, triggering recruitment of the adaptor Grb2 and the tyrosine phosphatase Shp2, resulting in stimulation of PI3K/AKT and MAPK signaling pathways. FRS2α also undergoes N-myristoylation, which was shown to be important for its localization to membranes and its ability to stimulate downstream signaling events (Kouhara et al., 1997). Here we show that FRS2α is also palmitoylated in cells and that cysteines 4 and 5 account for the entire modification. We further show that mutation of those two cysteines interferes with FRS2α localization to the plasma membrane (PM), and we quantify this observation using fluorescence fluctuation spectroscopy approaches. Importantly, prevention of myristoylation by introduction of a G2A mutation also abrogates palmitoylation, raising the possibility that signaling defects previously ascribed to the G2A mutant may actually be due to a failure of that mutant to undergo palmitoylation. Our results demonstrate that FRS2α undergoes coupled myristoylation and palmitoylation. Unlike stable cotranslational modifications, such as myristoylation and prenylation, palmitoylation is reversible due to the relative lability of the thioester linkage. Therefore, palmitoylation may provide a mechanism, in addition to phosphorylation, for dynamic regulation of FRS2 and its downstream signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoilação/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Cisteína/química , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Ácido Mirístico/metabolismo , Ácido Palmítico/metabolismo , Espectrometria de Fluorescência
7.
Biochim Biophys Acta Mol Cell Res ; 1864(9): 1494-1506, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28554772

RESUMO

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Fusão de Membrana , Fosfolipídeos/metabolismo , Transdução de Sinais , Esteróis/metabolismo
8.
Biochim Biophys Acta ; 1861(8 Pt B): 862-873, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26924250

RESUMO

The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-Ca(2+) signaling system is important for cell activation in response to various extracellular stimuli. This signaling system is initiated by receptor-induced hydrolysis of PI(4,5)P2 in the plasma membrane (PM) to generate the soluble second messenger inositol 1,4,5-trisphosphate (IP3). IP3 subsequently triggers the release of Ca(2+) from the endoplasmic reticulum (ER) store to the cytosol to activate Ca(2+)-mediated responses, such as secretion and proliferation. The consumed PM PI(4,5)P2 and ER Ca(2+) must be quickly restored to sustain signaling responses, and to maintain the homeostasis of PI(4,5)P2 and Ca(2+). Since phosphatidylinositol (PI), the precursor lipid for PM PI(4,5)P2, is synthesized in the ER membrane, and a Ca(2+) influx across the PM is required to refill the ER Ca(2+) store, efficient communications between the ER and the PM are critical for the homeostatic regulation of the PI(4,5)P2-Ca(2+) signaling system. This review describes the major findings that established the framework of the PI(4,5)P2-Ca(2+) signaling system, and recent discoveries on feedback control mechanisms at ER-PM junctions that sustain the PI(4,5)P2-Ca(2+) signaling system. Particular emphasis is placed on the characterization of ER-PM junctions where efficient communications between the ER and the PM occur, and the activation mechanisms of proteins that dynamically localize to ER-PM junctions to provide the feedback control during PI(4,5)P2-Ca(2+) signaling, including the ER Ca(2+) sensor STIM1, the extended synaptotagmin E-Syt1, and the PI transfer protein Nir2. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Assuntos
Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Homeostase/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Proteína ORAI1 , Molécula 1 de Interação Estromal
9.
J Biol Chem ; 290(23): 14289-301, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25887399

RESUMO

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation governs cell signaling. The PI transfer protein Nir2 is essential for replenishing PM PIP2 following receptor-induced hydrolysis, but key mechanistic aspects of this process remain elusive. Here, we demonstrate that PI at the membrane of the endoplasmic reticulum (ER) is required for the rapid replenishment of PM PIP2 mediated by Nir2. Nir2 detects PIP2 hydrolysis and translocates to ER-PM junctions via binding to phosphatidic acid. With distinct phosphatidic acid binding abilities and PI transfer protein activities, Nir2 and its homolog Nir3 differentially regulate PIP2 homeostasis in cells during intense receptor stimulation and in the resting state, respectively. Our study reveals that Nir2 and Nir3 work in tandem to achieve different levels of feedback based on the consumption of PM PIP2 and function at ER-PM junctions to mediate nonvesicular lipid transport between the ER and the PM.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Ligação ao Cálcio/análise , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Proteínas do Olho/análise , Células HeLa , Homeostase , Humanos , Hidrólise , Proteínas de Membrana/análise , Proteínas de Membrana Transportadoras , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/análise
11.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979311

RESUMO

Contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules (T-tubules), we hypothesize that the PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, while the ubiquitously expressed extended synaptotagmin 2 does not show a preference for PM curvature. At the mechanistic level, we find that the low complexity region (LCR) and the MORN motifs of junctophilins can independently bind to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins, Eps15-homology domain containing proteins (EHDs), that interact with the MORN_LCR motifs and facilitate junctophilins' preferential tethering to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a novel mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.

12.
Mol Biol Cell ; 33(3): br2, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020418

RESUMO

Homeostatic regulation of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2) in receptor-stimulated cells is mediated by the lipid transfer protein Nir2. Nir2 is dynamically recruited to endoplasmic reticulum-plasma membrane (ER-PM) junctions to facilitate replenishment of PM PIP2 hydrolyzed during receptor-mediated signaling. However, our knowledge regarding the activation and sustainment of Nir2-mediated replenishment of PM PIP2 is limited. Here, we describe the functions of Nir1 as a positive regulator of Nir2 and PIP2 homeostasis. In contrast to the family proteins Nir2 and Nir3, Nir1 constitutively localizes at ER-PM junctions. Nir1 potentiates Nir2 targeting to ER-PM junctions during receptor-mediated signaling and is required for efficient PM PIP2 replenishment. Live-cell imaging and biochemical analysis reveal that Nir1 interacts with Nir2 via a region between the FFAT motif and the DDHD domain. Combined, results from this study identify Nir1 as an ER-PM junction localized protein that promotes Nir2 recruitment for PIP2 homeostasis.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo
13.
Biomolecules ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551225

RESUMO

Gramicidin A (gA) is a linear antimicrobial peptide that can form a channel and specifically conduct monovalent cations such as H+ across the lipid membrane. The antimicrobial activity of gA is associated with the formation of hydroxyl free radicals and the imbalance of NADH metabolism, possibly a consequence caused by the conductance of cations. The ion conductivity of gramicidin A can be blocked by Ca2+ ions. However, the effect of Ca2+ ions on the antimicrobial activity of gA is unclear. To unveil the role of Ca2+ ions, we examined the effect of Ca2+ ions on the antimicrobial activity of gramicidin A against Staphylococcus aureus (S. aureus). Results showed that the antimicrobial mechanism of gA and antimicrobial activity by Ca2+ ions are concentration-dependent. At the low gA concentration (≤1 µM), the antimicrobial mechanism of gA is mainly associated with the hydroxyl free radical formation and NADH metabolic imbalance. Under this mode, Ca2+ ions can significantly inhibit the hydroxyl free radical formation and NADH metabolic imbalance. On the other hand, at high gA concentration (≥5 µM), gramicidin A acts more likely as a detergent. Gramicidin A not only causes an increase in hydroxyl free radical levels and NAD+/NADH ratios but also induces the destruction of the lipid membrane composition. At this condition, Ca2+ ions can no longer reduce the gA antimicrobial activity but rather enhance the bacterial killing ability of gramicidin A.


Assuntos
Antibacterianos , Cálcio , Gramicidina , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Cálcio/metabolismo , Cátions Bivalentes , Membrana Celular/metabolismo , Gramicidina/química , Gramicidina/farmacologia , Lipídeos de Membrana/metabolismo , NAD/metabolismo , Staphylococcus aureus/efeitos dos fármacos
14.
Contact (Thousand Oaks) ; 4: 25152564211026505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37366370

RESUMO

Recent studies indicated potential importance of membrane contact sites (MCS) between the endoplasmic reticulum (ER) and other cellular organelles. These MCS have unique protein and lipid composition and serve as hubs for inter-organelle communication and signaling. Despite extensive investigation of MCS protein composition and functional roles, little is known about the process of MCS formation. In this perspective, we propose a hypothesis that MCS are formed not as a result of random interactions between membranes of ER and other organelles but on the basis of pre-existing cholesterol-enriched ER microdomains.

15.
Science ; 372(6545): 935-941, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33927055

RESUMO

During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Legionella pneumophila/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas de Bactérias/química , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Retroalimentação Fisiológica , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/ultraestrutura , Legionella pneumophila/enzimologia , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Mutação , Fosfatidilinositol 3-Quinase/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Células RAW 264.7
16.
Elife ; 102021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973848

RESUMO

Sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. S1R modulates activity of multiple effector proteins and is a well-established drug target. However, signaling functions of S1R in cells are poorly understood. Here, we test the hypothesis that biological activity of S1R in cells can be explained by its ability to interact with cholesterol and to form cholesterol-enriched microdomains in the ER membrane. By performing experiments in reduced reconstitution systems, we demonstrate direct effects of cholesterol on S1R clustering. We identify a novel cholesterol-binding motif in the transmembrane region of human S1R. Mutations of this motif impair association of recombinant S1R with cholesterol beads, affect S1R clustering in vitro and disrupt S1R subcellular localization. We demonstrate that S1R-induced membrane microdomains have increased local membrane thickness and that increased local cholesterol concentration and/or membrane thickness in these microdomains can modulate signaling of inositol-requiring enzyme 1α in the ER. Further, S1R agonists cause disruption of S1R clusters, suggesting that biological activity of S1R agonists is linked to remodeling of ER membrane microdomains. Our results provide novel insights into S1R-mediated signaling mechanisms in cells.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Transdução de Sinais , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Microdomínios da Membrana , Ligação Proteica , Receptor Sigma-1
17.
Elife ; 92020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808593

RESUMO

Pathogens find diverse niches for survival including inside a host cell where replication occurs in a relatively protective environment. Vibrio parahaemolyticus is a facultative intracellular pathogen that uses its type 3 secretion system 2 (T3SS2) to invade and replicate inside host cells. Analysis of the T3SS2 pathogenicity island encoding the T3SS2 appeared to lack a mechanism for egress of this bacterium from the invaded host cell. Using a combination of molecular tools, we found that VPA0226, a constitutively secreted lipase, is required for escape of V. parahaemolyticus from the host cells. This lipase must be delivered into the host cytoplasm where it preferentially uses fatty acids associated with innate immune response to esterify cholesterol, weakening the plasma membrane and allowing egress of the bacteria. This study reveals the resourcefulness of microbes and the interplay between virulence systems and host cell resources to evolve an ingenious scheme for survival and escape.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Vibrio parahaemolyticus/metabolismo , Esterificação , Ilhas Genômicas , Sistemas de Secreção Tipo III , Vibrio parahaemolyticus/enzimologia
18.
Methods Mol Biol ; 1949: 1-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790244

RESUMO

Phosphatidylinositol (PI) is an inositol-containing phospholipid synthesized in the endoplasmic reticulum (ER). PI is a precursor lipid for PI 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM) important for Ca2+ signaling in response to extracellular stimuli. Thus, ER-to-PM PI transfer becomes essential for cells to maintain PI(4,5)P2 homeostasis during receptor stimulation. In this chapter, we discuss two live-cell imaging protocols to analyze ER-to-PM PI transfer at ER-PM junctions, where the two membrane compartments make close appositions accommodating PI transfer. First, we describe how to monitor PI(4,5)P2 replenishment following receptor stimulation, as a readout of PI transfer, using a PI(4,5)P2 biosensor and total internal reflection fluorescence microscopy. The second protocol directly visualizes PI transfer proteins that accumulate at ER-PM junctions and mediate PI(4,5)P2 replenishment with PI in the ER in stimulated cells. These methods provide spatial and temporal analysis of ER-to-PM PI transfer during receptor stimulation and can be adapted to other research questions related to this topic.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilinositóis/metabolismo , Transporte Biológico , Técnicas Biossensoriais , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia , Fosfatidilinositol 4,5-Difosfato/metabolismo
19.
Curr Opin Cell Biol ; 57: 99-105, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739879

RESUMO

ER-PM junctions are subcellular sites where the endoplasmic reticulum (ER) and the plasma membrane (PM) are kept in close appositions, providing a platform for inter-organelle contact. These membrane contact sites are important for many physiological functions in mammalian cells, including excitation-contraction coupling, store-operated Ca2+ entry, and non-vesicular transfer of lipids between the ER and the PM. Here we review recent insights into the 3D structure and spatial organization of ER-PM junctions in mammalian cells as well as molecular mechanisms underlying the formation and functions of mammalian ER-PM junctions.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Cálcio/metabolismo , Humanos , Metabolismo dos Lipídeos , Mamíferos , Proteínas de Membrana/metabolismo
20.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535977

RESUMO

RET is a receptor tyrosine kinase (RTK) that plays essential roles in development and has been implicated in several human diseases. Different from most of RTKs, RET requires not only its cognate ligands but also co-receptors for activation, the mechanisms of which remain unclear due to lack of high-resolution structures of the ligand/co-receptor/receptor complexes. Here, we report cryo-EM structures of the extracellular region ternary complexes of GDF15/GFRAL/RET, GDNF/GFRα1/RET, NRTN/GFRα2/RET and ARTN/GFRα3/RET. These structures reveal that all the four ligand/co-receptor pairs, while using different atomic interactions, induce a specific dimerization mode of RET that is poised to bring the two kinase domains into close proximity for cross-phosphorylation. The NRTN/GFRα2/RET dimeric complex further pack into a tetrameric assembly, which is shown by our cell-based assays to regulate the endocytosis of RET. Our analyses therefore reveal both the common mechanism and diversification in the activation of RET by different ligands.


Assuntos
Ativação Enzimática , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Microscopia Crioeletrônica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/química , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurturina/química , Neurturina/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA