Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(6): e35, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29346586

RESUMO

Plasmids are mobile genetics elements that play an important role in the environmental adaptation of microorganisms. Although plasmids are usually analyzed in cultured microorganisms, there is a need for methods that allow for the analysis of pools of plasmids (plasmidomes) in environmental samples. To that end, several molecular biology and bioinformatics methods have been developed; however, they are limited to environments with low diversity and cannot recover large plasmids. Here, we present PlasFlow, a novel tool based on genomic signatures that employs a neural network approach for identification of bacterial plasmid sequences in environmental samples. PlasFlow can recover plasmid sequences from assembled metagenomes without any prior knowledge of the taxonomical or functional composition of samples with an accuracy up to 96%. It can also recover sequences of both circular and linear plasmids and can perform initial taxonomical classification of sequences. Compared to other currently available tools, PlasFlow demonstrated significantly better performance on test datasets. Analysis of two samples from heavy metal-contaminated microbial mats revealed that plasmids may constitute an important fraction of their metagenomes and carry genes involved in heavy-metal homeostasis, proving the pivotal role of plasmids in microorganism adaptation to environmental conditions.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Metagenoma/genética , Metagenômica/métodos , Plasmídeos/genética , Algoritmos , Bactérias/classificação , Genômica/métodos , Filogenia , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
2.
Int J Syst Evol Microbiol ; 68(12): 3935-3941, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30394866

RESUMO

An aerobic, Gram-stain-negative, rod-shaped, non-motile, mesophilic soil bacterium, strain WS5A3pT, was isolated from a pesticide burial site in north-west Poland. The strain grew at 12-37 °C, at pH 8-9 and with 0-2 % (w/v) NaCl. The main fatty acids detected in WS5A3pT were summed feature 3, summed feature 8 and C16 : 0. The major respiratory quinone was Q-10 and major polar lipids were phosphatidylethanolamine, sphingoglycolipid and phosphatidylglycerol. The G+C content of the genome was 65.1 mol%. Phylogenetic pairwise distance analysis of the 16S rRNA gene placed this strain within the genus Sphingopyxis, with the highest similarity to Sphingopyxis witflariensis W-50T (98.8 %), Sphingopyxis bauzanensis BZ30T and Sphingopyxis ginsengisoli Gsoil 250T (98.3 %) and Sphingopyxis granuli NBRC 100800T (98.09 %). Genomic similarity analyses using ANIb and dDDH algorithms indicated levels of similarity of 81.44, 80.84 and 81.16 % between WS5A3pT and S. witflariensis, S. bauzanensisand S. granuli, respectively for average nucleotide identity and 25.90, 25.00 and 26.10 % for digital DNA-DNA hybridization. Based on the phylogenetic and phenotypic data, strain WS5A3pT should be considered as a representative of a novel Sphingopyxis species. The name Sphingopyxis lindanitolerans sp. nov. is proposed with the type strain WS5A3pT (=DSM 106274T=PCM 2932T).


Assuntos
Resíduos Perigosos , Praguicidas , Filogenia , Microbiologia do Solo , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
3.
Microb Cell Fact ; 17(1): 197, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572955

RESUMO

BACKGROUND: Although interactions between microorganisms involved in biogas production are largely uncharted, it is commonly accepted that methanogenic Archaea are essential for the process. Methanogens thrive in various environments, but the most extensively studied communities come from biogas plants. In this study, we employed a metagenomic analysis of deeply sequenced methanogenic communities, which allowed for comparison of taxonomic and functional diversity as well as identification of microorganisms directly involved in various stages of methanogenesis pathways. RESULTS: A comprehensive metagenomic approach was used to compare seven environmental communities, originating from an agricultural biogas plant, cattle-associated samples, a lowland bog, sewage sludge from a wastewater treatment plant and sediments from an ancient gold mine. In addition to the native consortia, two laboratory communities cultivated on maize silage as the sole substrate were also analyzed. Results showed that all anaerobic communities harbored genes of all known methanogenesis pathways, but their abundance varied greatly between environments and that genes were encoded by different methanogens. Identification of microorganisms directly involved in different stages of methane production revealed that hydrogenotrophic methanogens, such as Methanoculleus, Methanobacterium, Methanobrevibacter, Methanocorpusculum or Methanoregula, predominated in most native communities, whereas acetoclastic Methanosaeta seemed to be the key methanogen in the wastewater treatment plant. Furthermore, in many environments, the methylotrophic pathway carried out by representatives of Methanomassiliicoccales, such as Candidatus Methanomethylophilus and Candidatus Methanoplasma, seemed to play an important role in methane production. In contrast, in stable laboratory reactors substrate versatile Methanosarcina predominated. CONCLUSIONS: The metagenomic approach presented in this study allowed for deep exploration and comparison of nine environments in which methane production occurs. Different abundance of methanogenesis-related functions was observed and the functions were analyzed in the phylogenetic context in order to identify microbes directly involved in methane production. In addition, a comparison of two metagenomic analytical tools, MG-RAST and MetAnnotate, revealed that combination of both allows for a precise characterization of methanogenic communities.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Metano/síntese química
4.
Anaerobe ; 46: 46-55, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28219786

RESUMO

The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion.


Assuntos
Anaerobiose , Biodegradação Ambiental , Consórcios Microbianos , Silagem/microbiologia , Zea mays/química , Zea mays/microbiologia , Animais , Biodiversidade , Bovinos , Hidrólise , Metagenômica/métodos , Metano/biossíntese
5.
Am J Physiol Gastrointest Liver Physiol ; 305(10): G667-77, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24029465

RESUMO

Chronic inflammation and enteric infections are frequently associated with epithelial Na(+)/H(+) exchange (NHE) inhibition. Alterations in electrolyte transport and in mucosal pH associated with inflammation may represent a key mechanism leading to changes in the intestinal microbial composition. NHE3 expression is essential for the maintenance of the epithelial barrier function. NHE3(-/-) mice develop spontaneous distal chronic colitis and are highly susceptible to dextran sulfate (DSS)-induced mucosal injury. Spontaneous colitis is reduced with broad-spectrum antibiotics treatment, thus highlighting the importance of the microbiota composition in NHE3 deficiency-mediated colitis. We herein characterized the colonic microbiome of wild-type (WT) and NHE3(-/-) mice housed in a conventional environment using 454 pyrosequencing. We demonstrated a significant decrease in the phylogenetic diversity of the luminal and mucosal microbiota of conventional NHE3(-/-) mice compared with WT. Rederivation of NHE3(-/-) mice from conventional to a barrier facility eliminated the signs of colitis and decreased DSS susceptibility. Reintroduction of the conventional microflora into WT and NHE3(-/-) mice from the barrier facility resulted in the restoration of the symptoms initially described in the conventional environment. Interestingly, qPCR analysis of the microbiota composition in mice kept in the barrier facility compared with reconventionalized mice showed a significant reduction of Clostridia classes IV and XIVa. Therefore, the gut microbiome plays a prominent role in the pathogenesis of colitis in NHE3(-/-) mice, and, reciprocally, NHE3 also plays a critical role in shaping the gut microbiota. NHE3 deficiency may be a critical contributor to dysbiosis observed in patients with inflammatory bowel disease.


Assuntos
Bactérias/classificação , Colite/microbiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/toxicidade , Fezes/microbiologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
6.
Vaccines (Basel) ; 10(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062666

RESUMO

In this study,we used publicly available data from the Centrum e-Zdrowia (CeZ) Polish Databank proposing a possible correlation between influenza vaccination and mortality due to COVID-19. We limited our search to the patients with positive COVID­19 laboratory tests from 1 January 2020 to 31 March 2021 and who filled a prescription for any influenza vaccine during the 2019-2020 influenza season. In total, we included 116,277 patients and used a generalized linear model to analyze the data.We found out that patients aged 60+ who received an influenza vaccination have a lower probability of death caused by COVID-19 in comparison to unvaccinated, and the magnitude of this difference grows with age. For people below 60 years old, we did not observe an influence of the vaccination. Our results suggest a potential protective effect of the influenza vaccine on COVID-19 mortality of the elderly. Administration of the influenza vaccine before the influenza season would reduce the burden of increased influenza incidence, the risk of influenza and COVID­19 coinfection and render the essential medical resources accessible to cope with another wave of COVID-19. To our knowledge, this is the first study showing a correlation between influenza vaccination and the COVID-19 mortality rate in Poland.

7.
PLoS Biol ; 4(6): e180, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16700628

RESUMO

Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and expression of mammalian genes. However, previous studies disregarded differences in the genomic context of genes, which could potentially obscure any correlation between GC content and expression. In the present work, we directly compared the expression of GC-rich and GC-poor genes placed in the context of identical promoters and UTR sequences. We performed transient and stable transfections of mammalian cells with GC-rich and GC-poor versions of Hsp70, green fluorescent protein, and IL2 genes. The GC-rich genes were expressed several-fold to over a 100-fold more efficiently than their GC-poor counterparts. This effect was not due to different translation rates of GC-rich and GC-poor mRNA. On the contrary, the efficient expression of GC-rich genes resulted from their increased steady-state mRNA levels. mRNA degradation rates were not correlated with GC content, suggesting that efficient transcription or mRNA processing is responsible for the high expression of GC-rich genes. We conclude that silent-site GC content correlates with gene expression efficiency in mammalian cells.


Assuntos
Citosina/análise , Sequência Rica em GC , Regulação da Expressão Gênica , Guanina/análise , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Composição de Bases/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA , Transcrição Gênica
8.
Genes (Basel) ; 10(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500174

RESUMO

Sphingopyxis inhabit diverse environmental niches, including marine, freshwater, oceans, soil and anthropogenic sites. The genus includes 20 phylogenetically distinct, valid species, but only a few with a sequenced genome. In this work, we analyzed the nearly complete genome of the newly described species, Sphingopyxislindanitolerans, and compared it to the other available Sphingopyxis genomes. The genome included 4.3 Mbp in total and consists of a circular chromosome, and two putative plasmids. Among the identified set of lin genes responsible for γ-hexachlorocyclohexane pesticide degradation, we discovered a gene coding for a new isoform of the LinA protein. The significant potential of this species in the remediation of contaminated soil is also correlated with the fact that its genome encodes a higher number of enzymes potentially involved in aromatic compound degradation than for most other Sphingopyxis strains. Additional analysis of 44 Sphingopyxis representatives provides insights into the pangenome of Sphingopyxis and revealed a core of 734 protein clusters and between four and 1667 unique proteins per genome.


Assuntos
Genoma Bacteriano , Hexaclorocicloexano/metabolismo , Praguicidas/metabolismo , Sphingomonadaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Sphingomonadaceae/enzimologia , Sphingomonadaceae/metabolismo
9.
Front Microbiol ; 9: 1795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174655

RESUMO

Biochemical, physiological and genomic comparisons of two Pseudomonas strains, assigned previously to the Pseudomonas jessenii subgroup, which are efficient SDS-degraders were carried out. A GO enrichment analysis showed that the genomes of SDS-degraders encode more genes connected with bacterial cell wall biosynthesis and alkanesulfonate monooxygenase activity than their closest relatives from the P. jessenii subgroup. A transcriptomic analysis of the most promising strain exposed to detergent suggests that although SDS can be later utilized as a carbon source, in early stages it influences cell envelope integrity, causing a global stress response followed by cell wall modification and induction of repair mechanisms. Genomes of the analyzed strains from P. jessenii group encode multiple putative sulfatases and their enzymatic activity was experimentally verified, which led to the identification of three novel enzymes exhibiting activity toward SDS. Two of the novel alkylsulfatases showed their highest activity at pH 8.0 and the temperature of 60°C or 70°C. One of the enzymes retained its activity even after 1 h of incubation at 60°C. Ions like K+ and Mg2+ enhanced enzymatic activity of both proteins, whereas Cu2+ or EDTA had inhibitory effects.

10.
Syst Appl Microbiol ; 41(1): 13-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29153257

RESUMO

Microorganisms classified in to the Pseudomonas genus are a ubiquitous bacteria inhabiting variety of environmental niches and have been isolated from soil, sediment, water and different parts of higher organisms (plants and animals). Members of this genus are known for their metabolic versatility and are able to utilize different chemical compounds as a source of carbon, nitrogen or phosphorus, which makes them an interesting microorganism for bioremediation or bio-transformation. Moreover, Pseudomonas sp. has been described as a microorganism that can easily adapt to new environmental conditions due to its resistance to the presence of high concentrations of heavy metals or chemical pollution. Here we present the isolation and analysis of Pseudomonas silesiensis sp. nov. strain A3T isolated from peaty soil used in a biological wastewater treatment plant exploited by a pesticide packaging company. Phylogenetic MLSA analysis of 4 housekeeping genes (16S rRNA, gyrB, rpoD and rpoB), complete genome sequence comparison (ANIb, Tetranucleotide identity, digital DDH), FAME analysis, and other biochemical tests indicate the A3T strain (type strain PCM 2856T=DSM 103370T) differs significantly from the closest relative species and therefore represents a new species within the Pseudomonas genus. Moreover, bioinformatic analysis of the complete sequenced genome showed that it consists of 6,823,539bp with a 59.58mol% G+C content and does not contain any additional plasmids. Genome annotation predicted the presence of 6066 genes, of which 5875 are coding proteins and 96 are RNA genes.


Assuntos
Genoma Bacteriano , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Esgotos/microbiologia , Composição de Bases , Agentes de Controle Biológico , Análise por Conglomerados , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Poluentes Ambientais , Anotação de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fator sigma/genética , Sequenciamento Completo do Genoma
11.
Syst Appl Microbiol ; 41(4): 348-354, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29752019

RESUMO

Pseudomonas are known from their flexible degradation capabilities and their engagement in xenobiotic biotransformation and bioremediation in habitats like soil, active sludge, plant surfaces, and freshwater or marine environments. Here we present taxonomic characterization of three efficient sodium dodecyl sulfate degrading strains: AP3_10, AP3_20 and AP3_22T belonging to the genus Pseudomonas, recently isolated from peaty soil used in a biological wastewater treatment plant. Sequence analyses of 16S rRNA and housekeeping genes: gyrB, rpoD and rpoB showed that the three closely related isolates classify within the Pseudomonas jessenii subgroup. ANIb or dDDH genomic comparisons of AP3_22T (type strain DSM 105098T=PCM 2904T) supported by biochemical tests showed that the isolates differ significantly from their closest relatives. The combined genotypic, phenotypic and chemotaxonomic data strongly support the classification of the three strains: AP3_10, AP3_20 and AP3_22T as a novel species of Pseudomonas, for which we propose the name Pseudomonas laurylsulfatovorans sp. nov. with AP3_22T as the type strain.


Assuntos
Pseudomonas , Dodecilsulfato de Sódio/metabolismo , Águas Residuárias/microbiologia , Purificação da Água , Composição de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Tipagem Molecular , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo
12.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912333

RESUMO

We present here the draft genome sequence of Sphingopyxis bauzanensis DSM 22271. The assembly contains 4,258,005 bp in 28 scaffolds and has a GC content of 63.3%. A series of specific genes involved in the catabolism or transport of aromatic compounds was identified.

13.
Genome Announc ; 5(39)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28963214

RESUMO

We present the draft genome sequence of Pseudomonas jessenii type strain DSM 17150. The assembly consists of 13 contigs, contains 6,537,206 bp, and has a GC content of 59.7%.

14.
Genome Announc ; 5(39)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28963215

RESUMO

Here, we report the draft genome sequence of Pseudomonas umsongensis type strain DSM 16611. The assembly consists of 14 contigs containing 6,701,403 bp with a GC content of 59.73%.

15.
Genome Announc ; 5(36)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883138

RESUMO

Here, we present the draft genome sequence of Sphingopyxis witflariensis strain DSM 14551. The assembly consists of 38 contigs and contains 4,306,761 bp, with a GC content of 63.3%.

16.
Front Microbiol ; 8: 1872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163375

RESUMO

Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of both glucose and SDS, whereas in other isolates, the band was visible solely in presence of detergent in the culture medium. This suggests that these microorganisms isolated from peaty soil exhibit exceptional capabilities to survive in, and break down SDS, and they should be considered as a valuable source of biotechnological tools for future bioremediation and industrial applications.

17.
Front Microbiol ; 8: 936, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611742

RESUMO

Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained results indicate that Aeromonas sp. O23A is well-adapted to the extreme environmental conditions occurring in the Zloty Stok mine. The analysis of genome encoded traits allowed for a better understanding of the mechanisms of adaptation of the strain, also with respect to its presumable role in colonization and remediation of arsenic-contaminated waters, which may never have been discovered based on physiological analyses alone.

18.
Front Microbiol ; 8: 1881, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033919

RESUMO

A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD) consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin) on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i) an agricultural biogas plant (ABP) which utilizes maize silage as a main substrate, (ii) cattle slurry (CS), which contain elevated levels of lignocelluloses materials, and (iii) raw sewage sludge (RSS) with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS) and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS) prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic Methanosarcinaceae was observed by the end of the experiment. As a result, three independent, functional communities that syntrophically produced methane from acetate (primarily) and H2/CO2, methanol and methylamines were adapted. This study provides new insights into the specific process by which different inocula sampled from typical methanogenic environments that are commonly used to initiate industrial installations gradually adapted to allow biogas production from maize silage.

19.
Front Microbiol ; 7: 1252, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559332

RESUMO

Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals.

20.
FEBS J ; 272(24): 6310-23, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16336268

RESUMO

The family of testis-specific serine-threonine kinases (TSSKs) consists of four members whose expression is confined almost exclusively to testis. Very little is known about their physiological role and mechanisms of action. We cloned human and mouse TSSK3 and analysed the biochemical properties, substrate specificity and in vitro activation. In vitro TSSK3 exhibited the ability to autophosphorylate and to phosphorylate test substrates such as histones, myelin basic protein and casein. Interestingly, TSSK3 showed maximal in vitro kinase activity at 30 degrees C, in keeping with it being testis specific. Sequence comparison indicated the existence of a so-called 'T-loop' within the TSSK3 catalytic domain, a structure present in the AGC family of protein kinases. To test if this T-loop is engaged in TSSK3 regulation, we mutated the critical threonine residue within the T-loop to alanine (T168A) which resulted in inactivation of TSSK3 kinase. Furthermore, Thr168 is phosphorylated in vitro by the T-loop kinase phosphoinositide-dependent protein kinase-1 (PDK1). PDK1-induced phosphorylation increased in vitro TSSK3 kinase activity, suggesting that TSSK3 can be regulated in the same way as AGC kinase family members. Analysis of peptide sequences identifies the peptide sequence RRSSSY containing Ser5 that is a target for TSSK3 phosphorylation, as an efficient and specific substrate for TSSK3.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Células 3T3 , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Clonagem Molecular , Ativação Enzimática , Humanos , Insulina/farmacologia , Masculino , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA