Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Food Sci Technol ; 57(8): 3031-3039, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32612302

RESUMO

Apple pomace treated by steam explosion (SE-AP) was mixed with wheat flour, the wheat dough characteristics and biscuit quality are deserved to investigate. In this paper, the characteristics of wheat dough blended with SE-AP, including sedimentation values, pasting properties, and farinographic features were measured; the textural properties and sensory evaluation of the blended biscuits were analyzed. The results showed that the sedimentation values of wheat dough gradually decreased when SE-AP was less than 10%, which was almost no influence on the biscuit quality. The more SE-AP was added, the less values of peak viscosity, trough viscosity and final viscosity, which was disadvantage to the processing quality of wheat flour; however, the values of breakdown and setback increased with the addition of SE-AP, which improved the processing quality. Dough development time, stability time, and farinograph quality number decreased with the addition of SE-AP, which was unfavourable to the quality of wheat flour. When the addition of SE-AP was less than 10%, the hardness of biscuits decreased, springiness and resilience increased, and the chewability improved. According to the texture properties and organoleptic evaluation, the sensor score of the biscuits made from weak-gluten wheat with 10% (m/m) SE-AP added was the highest.

2.
Molecules ; 23(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356009

RESUMO

The sweet potato ß-amylase (SPA) was modified by 6 types of methoxy polyethylene glycol to enhance its specific activity and thermal stability. The aims of the study were to select the optimum modifier, optimize the modification parameters, and further investigate the characterization of the modified SPA. The results showed that methoxy polyethylene glycol maleimide (molecular weight 5000, Mal-mPEG5000) was the optimum modifier of SPA; Under the optimal modification conditions, the specific activity of Mal-mPEG5000-SPA was 24.06% higher than that of the untreated SPA. Mal-mPEG5000-SPA was monomeric with a molecular weight of about 67 kDa by SDS-PAGE. The characteristics of Mal-mPEG5000-SPA were significantly improved. The Km value, Vmax and Ea in Mal-mPEG5000-SPA for sweet potato starch showed that Mal-mPEG5000-SPA had greater affinity for sweet potato starch and higher speed of hydrolysis than SPA. There was no significant difference of the metal ions' effect on Mal-mPEG5000-SPA and SPA.


Assuntos
Ipomoea batatas/enzimologia , Polietilenoglicóis/química , beta-Amilase/química , Análise de Variância , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Metais/química , Peso Molecular , Relação Estrutura-Atividade , Temperatura , beta-Amilase/metabolismo
3.
J Food Sci Technol ; 55(9): 3640-3646, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150823

RESUMO

Tannic acid widely exists in plants, which forms a part of human diet. The antioxidant activity of tannic acid was evaluated by the chemical and cellular antioxidant assays. And its α-amylase inhibitory activity and behavior were also investigated. It was found that hydrogen- and electron donating capacities of tannic acid were higher than those of tertiary butylhydroquinone (TBHQ) based on reducing power, ABTS and DPPH radical scavenging assays. But for its low hydrophobic property, the antioxidant activity of tannic acid in linoleic acid system was inferior to that of TBHQ. In the cellular antioxidant assay, tannic acid showed the higher activity than gallic acid in the "PBS wash" protocol, which could attribute to its high binding capacity of cell membrane. Compared with acarbose, tannic acid possessed the stronger α-amylase inhibitory capacity. And the static fluorescence quenching of α-amylase in the presence of tannic acid could be also observed, which was caused by their binding interaction.

4.
J Food Sci Technol ; 53(7): 3028-3034, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27765973

RESUMO

The effect of steam flash explosion (SFE), a green processing technology, on the phenolic composition, antioxidant activity and antiproliferation to HepG2 of wheat bran was investigated. Moderate SFE treatment significantly enhanced the total soluble phenolic content of wheat bran. After SFE pretreatment, the free and conjugated ferulic acid content in the wheat bran were significantly increased. Antioxidant activities of SFE treated wheat bran were higher than those untreated wheat bran. The cellular antioxidant and antiproliferative activities of SFE treated wheat bran were also significantly ameliorated. It was suggested that SFE pretreatment could be applied to release the bound phenolic compounds and enhance the antioxidant activities and antiproliferative activities of wheat bran.

5.
Int J Mol Sci ; 16(8): 17999-8017, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26247946

RESUMO

Isoliquiritigenin (ILTG) possesses many pharmacological properties. However, its poor solubility and stability in water hinders its wide applications. The solubility of bioactive compounds can often be enhanced through preparation and delivery of various cyclodextrin (CD) inclusion complexes. The 6-O-α-D-maltosyl-ß-CD (G2-ß-CD), as one of the newest developments of CDs, has high aqueous solubility and low toxicity, especially stable inclusion characteristics with bioactive compounds. In this work, we for the first time construct and characterize the supermolecular structure of ILTG/G2-ß-CD by scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD). The solubility of ILTG in water at 25 °C rises from 0.003 to 0.717 mg/mL by the encapsulation with G2-ß-CD. Our experimental observations on the presence of the ILTG/G2-ß-CD inclusion complex are further supported by the ONIOM(our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations, typically substantiating these supermolecular characteristics, such as detailed structural assignments, preferred binding orientations, selectivity, solvent effects, interaction energies and forces of the ILTG/G2-ß-CD inclusion complex. Our results have elucidated how ILTG interacts with G2-ß-CD, demonstrating the primary host-guest interactions between ILTG and G2-ß-CD, characterized by hydrogen bonds, hydrophobic interactions, electrostatic forces, and conformational effects, are favored for the formation of the ILTG/G2-ß-CD inclusion.


Assuntos
Chalconas/química , Substâncias Macromoleculares/química , beta-Ciclodextrinas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Água/química , Difração de Raios X
6.
J Food Sci Technol ; 52(5): 3099-104, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25892815

RESUMO

The foxtail millet (Setaria italica Beauv) bran oil was extracted with traditional solvent extraction (SE), supercritical carbon dioxide extraction (SCE) and subcritical propane extraction (SPE) and analyzed the yield, physicochemical property, fatty acid profile, tocopherol composition, oil oxidative stability in this study. The yields of foxtail millet bran oil by SE, SCE and SPE were 17.14 %, 19.65 %, 21.79 % of raw material weight (corresponded to 75.54 %, 86.60 %, 96.03 % of the total amount of the oil measured by using Soxhlet extraction), respectively. The effect of the extraction methods on the physicochemical properties (peroxide value, saponification value and color) was significant while the difference in fatty acid profile was negligible based on GC analysis. The major components of vitamin E in the obtained oils were identified as α- and ß-tocopherols by HPLC, and SPE was superior to SE and SCE in the extraction of tocopherols. In Rancimat test, the oil obtained by SPE showed the highest oil oxidative stability, which could attribute to its high tocopherol content and low peroxide value. In view of oil quality, SPE employed smaller times and lower pressures compared to SE and SCE. SPE was a suitable and selective method for the extraction of the foxtail millet bran oil.

7.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790843

RESUMO

The effect of sulfuric acid hydrolysis on the Pickering emulsifying capacity of Tartary buckwheat flour (TBF) rich in starch was evaluated for the first time. The results indicate that the sulfuric acid concentration and hydrolysis time had a significant impact on the Pickering emulsifying capacity of acid-hydrolyzed Tartary buckwheat flour (HTBF). A low sulfuric acid concentration (1-2 mol/L) could reduce the particle size of HTBF, but it also decreased the Pickering emulsifying ability. At a sulfuric acid concentration of 3 mol/L, appropriate treatment time (2 and 3 days) led to particle aggregation but significantly improved wettability, thereby resulting in a rapid enhancement in emulsifying capacity. Under these conditions, the obtained HTBF (HTBF-D2-C3 and HTBF-D3-C3) could stabilize medium-chain triglyceride (MCT)-based Pickering high-internal-phase emulsions (HIPEs) with an oil-phase volume fraction of 80% at the addition amounts (c) of ≥1.0% and ≥1.5%, respectively. Its performance was significantly superior to that of TBF (c ≥ 2.0%). Furthermore, at the same addition amount, the droplet size of HIPEs constructed by HTBF-D3-C3 was smaller than that of HTBF-D2-C3, and its gel strength and microrheological performance were also superior to those of HTBF-D2-C3, which was attributed to the higher wettability of HTBF-D3-C3. The findings of this study can facilitate the in-depth application of Tartary buckwheat and provide references for the development of novel Pickering emulsifiers.

8.
Food Chem X ; 22: 101476, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813458

RESUMO

The feasibility of defatted grape seed powder (DGSP) stabilizing Pickering emulsion gels as butter substitute was investigated. The Pickering emulsion gel was constructed using DGSP through high-speed homogenization, and the effects of particle concentration (c) and oil-phase (Medium chain triglyceride) volume fraction (φ) on its structure and properties were investigated. Its application as a butter substitute was also evaluated. The results showed that DGSP had various particle shapes, a wide particle size distribution (3-130 µm), and a three-phase contact angle of 128.9 ± 2.3°. The O/W Pickering emulsion gels with φ ≥ 60% could be obtained at c ≥ 2%. The droplet diameter was negatively correlated with c and positively correlated with φ, while the gel strength was positively related to c and φ. The resulting emulsion gel demonstrated solid-like viscoelastic behavior and pseudoplasticity, and had the potential to serve as a butter substitute. The results can promote the application of grape seeds in food.

9.
Ultrason Sonochem ; 104: 106807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367307

RESUMO

The structure and functional properties of okra seed protein (OSP) were characterized, the ultrasonic homogenization process of OSP nano-emulsion was optimized by response surface methodology (RSM), and its stability was also evaluated in this study. The results suggested that OSP was a high-quality plant protein, rich in glutamic acid. The molecular weight of its main subunits distributed in the range of 10-55 kDa, and some subunits were connected by disulfide bonds. Although the water and oil holding capacities of OSP were inferior to those of soy protein isolate (SPI), its emulsifying ability was superior to that of SPI. And the OSP concentration, ultrasonic time and ultrasonic power had obvious effects on the droplet size of nanoemulsion. The optimum process of OSP emulsion was determined as follows: OSP concentration 2.4 %, ultrasonic power 600 W, ultrasonic time 340 s. Under these conditions, the median droplet size of the nanoemulsion was 192.03 ± 3.48 nm, close to the predicted value (191.195 nm). And the obtained nano-emulsion exhibited high stability to the changes of pH, temperature and ionic strength in the environment. Our results can provide reference for the application of OSP, and promote the development of plant protein-based nanoemulsions.


Assuntos
Abelmoschus , Emulsões/química , Sementes , Proteínas de Plantas
10.
Food Chem X ; 22: 101277, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515830

RESUMO

The acid-hydrolyzed acorn starch samples (HAS-1, HAS-2, HAS-3, and HAS-4) were prepared from natural acorn starch (NAS) at sulfuric acid concentrations of 1, 2, 3, and 4 mol/L for 2 d. The particle characteristics and structures of HAS were investigated, and Pickering high internal phase emulsions (HIPEs) based on HAS were constructed and characterized. The results showed that with an increase in sulfuric acid concentration, the size, yield, amylose content, molecular weight, and amylopectin chain length of HAS gradually decreased. HAS retained an A-type crystal structure, and its relative crystallinity and short-range order degree gradually increased with increasing sulfuric acid concentration. Acid hydrolysis treatment improved the wettability of NAS, and its effect was positively correlated with the sulfuric acid concentration. HAS-3 and HAS-4 could stabilize the Pickering HIPEs with an oil phase volume fraction of 80% at c ≥ 1.5%. The mechanical properties of the HIPEs were positively correlated with c.

11.
Food Chem X ; 23: 101641, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39139489

RESUMO

In order to improve the quality of frozen dough, a calcium alginate-coated sodium alginate/trehalose/wheat starch ternary complex was designed in this paper. The ternary complex was added to dough, and the dough quality were measured after 0-30 d of frozen storage. The XRD and FT-IR results showed the ternary complex was mainly starchy crystal. The TGA curves showed the starting (To), peak (Tp) and termination temperature (Tc) were increased. The interaction between sodium alginate and trehalose enhanced the thermal performance of ternary complex. As the ternary complex addition to dough increased, the maximum ice crystal formation zone of the frozen dough passed faster, resulting in more uniform and smaller ice crystals. The dough with 0.8% addition contained more bound water and had better hardness, springiness and cohesiveness. In conclusion, the study provides a novel insight and understanding for the development of ternary complex as food additives in frozen food industry.

12.
Foods ; 12(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37685161

RESUMO

Wei safflower seed oil (WSO) prepared by the cold pressing method and organic solvent extraction method was characterized in this study. The yield of cold-pressed WSO (CP-WSO) was inferior to that of n-hexane-extracted WSO (HE-WSO). The physicochemical properties (refractive index, density, iodine value, insoluble impurities) and fatty acid compositions were similar, and both were rich in linoleic acid. However, CP-WSO had better color and less solvent residue. The type and content of vitamin E in CP-WSO was also superior to that in HE-WSO, which explained the high oxidative stability of CP-WSO in the Rancimat test. Our results provide a reference for the development of Wei safflower seed oil.

13.
Foods ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509875

RESUMO

A dihydromyricetin (DMY)/α-lactoalbumin (α-La) covalent complex was prepared and characterized, and its application in nano-emulsions was also evaluated in this study. The results suggested that the covalent complex could be obtained using the alkaline method. The UV and IR spectra confirmed the formation of the covalent complex, and the amount of DMY added was positively correlated with the total phenol content of the complex. The complex had an outstanding 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-radical-scavenging ability, reducing power and α-glucosidase inhibitory activity, which were positively related to its total phenol content. The complex could be used as an emulsifier to stabilize the ß-carotene-loaded nano-emulsion. The stability and ß-carotene-protective capacity of the nano-emulsion stabilized by the complex were also positively related to the total phenol content of the complex, being higher than those of the nano-emulsion developed using α-La. Our results provide a reference for the construction of a new food delivery system and extend the applications of α-La and DMY in foods.

14.
Foods ; 12(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444355

RESUMO

The effects of ultrasonic treatment on the structure and physicochemical properties of pea starch were investigated in this study. The results showed that ultrasonic treatment increased the hydrolysis rate and particle size of pea starch. In the process of treatment, there were some depressions and pores on the surface of pea starch granules. Although the crystallization type of starch was retained, its crystallinity decreased. The pasting temperature of pea starch remained stable after ultrasonic treatment, but its peak viscosity, trough viscosity, cold viscosity, breakdown viscosity and setback viscosity all declined significantly. The transparency of starch paste decreased, but proper ultrasonic treatment could improve the strength of starch gel. The obtained results can provide a reference for the physical modification of pea starch.

15.
Food Chem X ; 20: 101023, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144792

RESUMO

The binding capacity of 10 flavonoids with okra seed protein (OSP) was studied by fluorescence spectroscopy. The structure of flavonoids had an obvious impact on binding performance. The binding ability of flavanone was lower than that of flavone, isoflavone and dihydrochalcone. The binding capacity of flavonoid glycoside was superior to that of the corresponding flavonoid aglycone. The binding ability was positively correlated with the number of phenolic hydroxyl groups on the B ring. The steric field and electrostatic field model constructed by 3D-QSAR method could well explain the above interaction behavior. Thermodynamic analysis suggested that the quenching mechanism of OSP caused by flavonoids was static quenching, and the binding-site number was 1. In addition, hydrogen bonding and van der Waals force dominated this interaction. The 3D and synchronous fluorescence spectra showed that there was no significant change in the polarity of the environment around tryptophan and tyrosine residues during binding.

16.
Food Chem ; 418: 135904, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36965389

RESUMO

The feasibility of constructing a Pickering emulsion gel with proanthocyanidin particles (PAP) was evaluated in this study, and the related mechanism was revealed by combining instrumental characterization with molecular dynamics simulation. The results showed that PAP was composed of nano/micron spherical particles or their fragments, which had excellent wettability. Suitable PAP addition amount (w, ≥1%) and oil volume fraction (φ, 40-90 %) were beneficial to the formation of stable Pickering emulsion gel. The oil droplet size of gel was inversely proportional to w and φ. The mechanical parameters (gel strength, loss modulus, and storage modulus) were positively correlated with w and φ. Molecular dynamics simulation indicated that the proanthocyanidin molecules in the oil-water system could spontaneously reside and aggregate at the interface, and their interactions with water and oil reduced interfacial tension, which was consistent with the experimental results. This study provides a reference for other polyphenol-based Pickering emulsions.


Assuntos
Simulação de Dinâmica Molecular , Proantocianidinas , Emulsões , Géis , Água , Tamanho da Partícula
17.
Int J Biol Macromol ; 239: 124289, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011752

RESUMO

In this work, the granule characteristics, functional properties, in-vitro digestibility, antioxidant capacity, and phenolic composition of acorn starch were investigated and compared to those of potato starch and corn starch, and its Pickering emulsifying ability was also evaluated. The results showed that the acorn starch granules were spherical and oval in shape, with a smaller particle size, and the amylose content and crystallinity degree were similar to those of corn starch. However, the acorn starch was difficult to swell, with poor aqueous solubility, though it had a strong gel strength and setback viscosity. Because acorn starch contained more free and bound polyphenols, its resistant starch content after cooking and ABTS and DPPH radical scavenging activities were significantly higher than those of potato starch and corn starch. Acorn starch also exhibited outstanding particle wettability and could stabilize Pickering emulsions. The assessed emulsion showed an outstanding effect for protecting ß-carotene against ultraviolet irradiation and was positively correlated with the acorn starch addition amount. The obtained results may serve as a reference for the further development of acorn starch.


Assuntos
Quercus , Amido , Amido/química , Emulsões/química , Amilose/química , Tamanho da Partícula , Viscosidade , Quercus/química
18.
Curr Res Food Sci ; 6: 100458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815998

RESUMO

With dihydromyricetin (DMY)/high-amylose corn starch (HCS) composite particles as the emulsifier, Pickering nano-emulsions were fabricated by combining high-speed shearing and high-pressure homogenization. The effect of particle properties and processing conditions on the formation and physicochemical properties of the Pickering nano-emulsions was then investigated systematically. The results showed that the DMY content of the composite particles, the oil phase volume fraction of the emulsion, and the homogenization conditions had obvious effects on the droplet size of the emulsion, where appropriate DMY content in the composite particles (5-20%) contributed to the formation of stable Pickering nano-emulsions. The oil phase of the obtained emulsions exhibited good stability during high-temperature storage, and their ß-carotene protecting performance against UV irradiation was superior to the emulsion stabilized by Tween 20. The in vitro simulated digestion analysis indicated that the nano-emulsions developed by the composite particles could enhance the bioaccessibility of ß-carotene and inhibit starch hydrolysis.

19.
Front Nutr ; 10: 1248611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621736

RESUMO

The polysaccharides in honeysuckle leaves (PHL) were separated and characterized for the first time. The nano-emulsion stabilized by PHL and whey protein isolate (WPI) were also fabricated based on the ultrasonic method. The results indicated that PHL was mainly composed of glucose (47.40 mol%), galactose (19.21 mol%) and arabinose (20.21 mol%) with the weight-average molecular weight of 137.97 ± 4.31 kDa. The emulsifier concentration, WPI-to-PHL ratio, ultrasound power and ultrasound time had significant influence on the droplet size of PHL-WPI nano-emulsion. The optimal preparation conditions were determined as following: emulsifier concentration, 1.7%; WPI/PHL ratio, 3:1; ultrasonic power, 700 W; ultrasonic time, 7 min. Under the above conditions, the median diameter of the obtained nano-emulsion was 317.70 ± 5.26 nm, close to the predicted value of 320.20 nm. The protective effect of PHL-WPI emulsion on ß-carotene against UV irradiation was superior to that of WPI emulsion. Our results can provide reference for the development of honeysuckle leaves.

20.
J Fungi (Basel) ; 9(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36983542

RESUMO

Six new cytochalasans-namely, aspergicytochalasins A-F (1-6)-together with five known analogs were isolated and characterized from the endophytic fungus Aspergillus sp. from the medicinal plant Lonicera japonica. The structures of the new compounds were established by NMR and MS methods as well as single crystal X-ray diffractions. Compounds 3 and 4 showed weak antibacterial activities to Staphylococcus aureus, with MIC values of 128 and 64 µg/mL, respectively. Compounds 1, 3, 5 and 6 showed inhibitory activities on NO production, with IC50 values less than 40 µM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA