Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 38(1): 33, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598586

RESUMO

Femtosecond laser is a promising surface treatment tool for zirconia implant. In this study, the fatigue behavior of zirconia specimens with microgrooved surfaces formed by femtosecond laser is reported. One hundred sixty CAD/CAM zirconia bars (20 mm × 4 mm × 1.4 mm) were evenly divided into four groups with different surface: as sintered; sandblasted with 110 µm Al2O3; femtosecond laser produced microgrooves having 50 µm width, 30 µm depth, and 100 µm pitch; microgrooves having 30 µm width, 20 µm depth, and 60 µm pitch. The femtosecond laser formed micro/nanostructured microgrooves with precise size on zirconia surfaces. XRD analysis indicated that microgrooved surface showed no obvious tetragonal-to-monoclinic phase transformation. The fatigue strength of sandblasted specimens (728 MPa) was significantly higher than that of as sintered specimens (570 MPa). However, the fatigue strength of specimens with microgrooved surface decreased to about 360-380 MPa. The results suggest femtosecond laser is an effective technique to regulate the surface microtopography of zirconia, while further investigations are needed to improve its fatigue behavior.


Assuntos
Lasers , Zircônio , Propriedades de Superfície , Microscopia Eletrônica de Varredura , Teste de Materiais , Cerâmica , Materiais Dentários
2.
Cancer Cell Int ; 21(1): 297, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098960

RESUMO

BACKGROUND: Although many biomarkers have been reported for detecting glioma, the prognosis for the disease remains poor, and therefore, new biomarkers need to be identified. GNG5, which is part of the G-protein family, has been associated with different malignant tumors, though the role of GNG5 in glioma has not been studied. Therefore, we aimed to identify the relationship between GNG5 and glioma prognosis and identify a new biomarker for the diagnosis and treatment of gliomas. METHODS: We used data on more than a thousand gliomas from multiple databases and clinical data to determine the expression of GNG5 in glioma. Based on clinical data and CGGA database, we identified the correlation between GNG5 and multiple molecular and clinical features and prognosis using various analytical methods. Co-expression analysis and GSEA were performed to detect GNG5-related genes in glioma and possible signaling pathways involved. ESTIMATE, ssGSEA, and TIMER were used to detect the relationship between GNG5 and the immune microenvironment. Functional experiments were performed to explore the function of GNG5 in glioma cells. RESULTS: GNG5 is highly expressed in gliomas, and its expression level is positively correlated with pathological grade, histological type, age, and tumor recurrence and negatively correlated with isocitrate dehydrogenase mutation, 1p/19 co-deletion, and chemotherapy. Moreover, GNG5 as an independent risk factor was negatively correlated with the overall survival time. GSEA revealed the potential signaling pathways involved in GNG5 function in gliomas, including cell adhesion molecules signaling pathway. The ssGSEA, ESTIMATE, and TIMER based analysis indicated a correlation between GNG5 expression and various immune cells in glioma. In vivo and in vitro experiments showed that GNG5 could participate in glioma cell proliferation and migration. CONCLUSIONS: Based on the large data platform and the use of different databases to corroborate results obtained using various datasets, as well as in vitro and in vivo experiments, our study reveals for the first time that GNG5, as an oncogene, is overexpressed in gliomas and can inhibit the proliferation and migration of glioma cells and lead to poor prognosis of patients. Thus, GNG5 is a potential novel biomarker for the clinical diagnosis and treatment of gliomas.

3.
Opt Lett ; 43(18): 4514-4517, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211904

RESUMO

Wave plates (WPs) are key components in optical polarization systems whose phase retardations should be measured accurately. The key point of most light extinction methods focuses on how to precisely judge the system's extinction state and then confirm corresponding angle positions of the optical components. Usually the extinction state of a measurement system is judged by detecting residue of outgoing light intensity. In this Letter, a method of measuring the phase retardation of an arbitrary WP based on magneto-optical modulation is proposed. A magneto-optical modulator is placed between the standard quarter-WP and the second polarizer on the basis of the traditional optical path. The measurement signal is obtained after the outgoing light passing through a band-pass filter whose center frequency is the same as the frequency of the magneto-optic modulator's driving voltage. This method detects the base frequency component instead of the whole intensity of the outgoing light, so as to get better judgement accuracy of the system's extinction state. The arbitrary WP's phase retardation can be accurately derived by detecting the residue of the base frequency component of the outgoing light signal and then judging the angle position of the second polarizer when the system is in the state of extinction. The corresponding theoretical formulas are deduced by the Jones matrix, and the WP measuring system is established. The error analysis shows that the system measurement uncertainty is about 4.5' if the experiment temperature varies in the range of 0.1°C. Experiment results on half-WPs and quarter-WPs show that the presented method is in good agreement with other methods. The measurement repeatability is also good, with the standard deviation about 2'.

4.
Technol Cancer Res Treat ; 21: 15330338211035270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35538679

RESUMO

OBJECTIVE: Glioblastoma multiforme (GBM) is the most malignant primary brain tumor in adults. This study aimed to identify significant prognostic biomarkers related to GBM. METHODS: We collected 3 GBM and 3 healthy human brain samples for transcriptome and proteomic sequencing analysis. Differentially expressed genes (DEGs) between GBM and control samples were identified using the edge R package in R. Functional enrichment analyses, prediction of long noncoding RNA target genes, and protein-protein interaction network analyses were performed. Subsequently, transcriptomic and proteomic association analyses, validation using The Cancer Genome Atlas (TCGA) database, and survival and prognostic analyses were conducted. Then the hub genes directly related to GBM were screened. Finally, the expression of key genes was verified by quantitative polymerase chain reaction (qPCR). RESULTS: Totally, 1140 transcripts and 503 proteins were significantly up- or down-regulated. A total of 25 genes were upregulated and 62 were downregulated at both the transcriptome and proteome levels. Results from TCGA database showed that 84 of these 87 genes matched with transcriptome sequencing results. A Cox regression analysis suggested that Fibronectin 1(FN1) was a prognostic risk factor. The qPCR results showed that FN1 was significantly upregulated in GBM samples. CONCLUSIONS: FN1 may play a role in GBM progression through ECM-receptor interaction and PI3K-Akt signaling pathways. FN1 may be considered as a prognostic biomarkers related to GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteoma/genética , Proteômica , Transcriptoma
5.
J Mol Neurosci ; 71(9): 1951-1966, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33403589

RESUMO

Hippocampal sclerosis (HS) is one of the most prevalent pathological types of temporal lobe epilepsy (TLE), and it significantly affects patient prognoses. The methylation of DNA plays an important role in the development of epilepsy. However, few studies have focused on HS subtypes to determine DNA methylation profiles in TLE. This study aimed to determine the pathogenesis of TLE from an epigenetic perspective in patients with TLE-HS type I (TLE-HSTI) and TLE without HS (TLE-nHS) using whole-genome bisulfite sequencing (WGBS). We defined 1171 hypermethylated and 2537 hypomethylated regions and found 632 differentially methylated genes (DMG) in the promoter region that were primarily involved in the regulation of various aspects of epilepsy development. Twelve DMG overlapped with differentially expressed genes (DEG) in the promoter region, and RT-qPCR findings revealed significant overexpression of the SBNO2, CBX3, RASAL3, and TMBIM4 genes in TLE-HSTI. We present the first systematic analysis of methylation profiles of TLE-HSTI and TLE-nHS from an epigenetic perspective using WGBS. Overall, our preliminary data highlight the underlying mechanism of TLE-HSTI, providing a new perspective for guiding treatment of TLE.


Assuntos
Metilação de DNA , Epilepsia do Lobo Temporal/genética , Hipocampo/patologia , Adolescente , Adulto , Proteínas Cromossômicas não Histona/genética , Epigenoma , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas Repressoras/genética , Esclerose , Proteínas Ativadoras de ras GTPase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA