Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001503

RESUMO

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Assuntos
Melanoma , Linfócitos T , Camundongos , Animais , Linfócitos T/patologia , Neutrófilos/patologia , Deriva e Deslocamento Antigênicos , Imunoterapia , Antígeno CTLA-4
2.
Cell ; 183(2): 363-376.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007267

RESUMO

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.


Assuntos
Biomarcadores Farmacológicos/sangue , DNA Tumoral Circulante/análise , Inibidores de Checkpoint Imunológico/uso terapêutico , Adulto , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo
3.
Nature ; 591(7851): 652-658, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33588426

RESUMO

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells1. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis1. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8+ T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (Treg) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of Treg cells is dependent on Treg cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with Treg cell function in the presence of glucose.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Glicólise , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
4.
Immunity ; 44(1): 179-193, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789923

RESUMO

Current approaches to cancer immunotherapy aim to engage the natural T cell response against tumors. One limitation is the elimination of self-antigen-specific T cells from the immune repertoire. Using a system in which precursor frequency can be manipulated in a murine melanoma model, we demonstrated that the clonal abundance of CD4(+) T cells specific for self-tumor antigen positively correlated with antitumor efficacy. At elevated precursor frequencies, intraclonal competition impaired initial activation and overall expansion of the tumor-specific CD4(+) T cell population. However, through clonally derived help, this population acquired a polyfunctional effector phenotype and antitumor immunity was enhanced. Conversely, development of effector function was attenuated at low precursor frequencies due to irreversible T cell exhaustion. Our findings assert that the differential effects of T cell clonal abundance on phenotypic outcome should be considered during the design of adoptive T cell therapies, including use of engineered T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma Experimental/imunologia , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Separação Celular , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Nature ; 539(7629): 443-447, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828943

RESUMO

Recent clinical trials using immunotherapy have demonstrated its potential to control cancer by disinhibiting the immune system. Immune checkpoint blocking (ICB) antibodies against cytotoxic-T-lymphocyte-associated protein 4 or programmed cell death protein 1/programmed death-ligand 1 have displayed durable clinical responses in various cancers. Although these new immunotherapies have had a notable effect on cancer treatment, multiple mechanisms of immune resistance exist in tumours. Among the key mechanisms, myeloid cells have a major role in limiting effective tumour immunity. Growing evidence suggests that high infiltration of immune-suppressive myeloid cells correlates with poor prognosis and ICB resistance. These observations suggest a need for a precision medicine approach in which the design of the immunotherapeutic combination is modified on the basis of the tumour immune landscape to overcome such resistance mechanisms. Here we employ a pre-clinical mouse model system and show that resistance to ICB is directly mediated by the suppressive activity of infiltrating myeloid cells in various tumours. Furthermore, selective pharmacologic targeting of the gamma isoform of phosphoinositide 3-kinase (PI3Kγ), highly expressed in myeloid cells, restores sensitivity to ICB. We demonstrate that targeting PI3Kγ with a selective inhibitor, currently being evaluated in a phase 1 clinical trial (NCT02637531), can reshape the tumour immune microenvironment and promote cytotoxic-T-cell-mediated tumour regression without targeting cancer cells directly. Our results introduce opportunities for new combination strategies using a selective small molecule PI3Kγ inhibitor, such as IPI-549, to overcome resistance to ICB in patients with high levels of suppressive myeloid cell infiltration in tumours.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Humanos , Tolerância Imunológica/efeitos dos fármacos , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/enzimologia , Metástase Neoplásica/tratamento farmacológico , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
6.
Mol Ther ; 26(4): 1008-1019, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29478729

RESUMO

Anti-viral immunity presents a major hurdle for systemically administered oncolytic viruses (OV). Intratumoral OV therapy has a potential to overcome this problem through activation of anti-tumor immune response, with local and abscopal effects. However, the effects of anti-viral immunity in such a setting are still not well defined. Using Newcastle Disease Virus (NDV) as a model, we explore the effects of pre-existing anti-viral immunity on therapeutic efficacy in syngeneic mouse tumor models. Unexpectedly, we find that while pre-existing immunity to NDV limits its replication in tumors, tumor clearance, abscopal anti-tumor immune effects, and survival are not compromised and, on the contrary, are superior in NDV-immunized mice. These findings demonstrate that pre-existing immunity to NDV may increase its therapeutic efficacy through potentiation of systemic anti-tumor immunity, which provides clinical rationale for repeated therapeutic dosing and prompts investigation of such effects with other OVs.


Assuntos
Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Neoplasias/imunologia , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/imunologia , Imunidade Adaptativa , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Humanos , Injeções Intralesionais , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Melanoma Experimental , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Vírus Oncolíticos/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transgenes , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
N Engl J Med ; 371(23): 2189-2199, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25409260

RESUMO

BACKGROUND: Immune checkpoint inhibitors are effective cancer treatments, but molecular determinants of clinical benefit are unknown. Ipilimumab and tremelimumab are antibodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti-CTLA-4 treatment prolongs overall survival in patients with melanoma. CTLA-4 blockade activates T cells and enables them to destroy tumor cells. METHODS: We obtained tumor tissue from patients with melanoma who were treated with ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors and matched blood samples. Somatic mutations and candidate neoantigens generated from these mutations were characterized. Neoantigen peptides were tested for the ability to activate lymphocytes from ipilimumab-treated patients. RESULTS: Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were characterized with the use of massively parallel sequencing. A discovery set consisted of 11 patients who derived a long-term clinical benefit and 14 patients who derived a minimal benefit or no benefit. Mutational load was associated with the degree of clinical benefit (P=0.01) but alone was not sufficient to predict benefit. Using genomewide somatic neoepitope analysis and patient-specific HLA typing, we identified candidate tumor neoantigens for each patient. We elucidated a neoantigen landscape that is specifically present in tumors with a strong response to CTLA-4 blockade. We validated this signature in a second set of 39 patients with melanoma who were treated with anti-CTLA-4 antibodies. Predicted neoantigens activated T cells from the patients treated with ipilimumab. CONCLUSIONS: These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma and provide a rationale for examining exomes of patients for whom anti-CTLA-4 agents are being considered. (Funded by the Frederick Adler Fund and others.).


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados , Antígeno CTLA-4/imunologia , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Teste de Histocompatibilidade , Humanos , Ipilimumab , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/secundário , Pessoa de Meia-Idade , Mutação , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia
8.
Blood ; 120(24): 4882-91, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23012326

RESUMO

Delays in immune recovery after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are associated with increased risks of infection and relapse. IL-7 has a central role in T-cell development and survival and enhances immune recovery in murine models of allo-HSCT. We performed a phase 1 trial of r-hIL-7 (CYT107) in recipients of T-cell depleted allo-HSCTs. Twelve patients were treated with escalating doses of r-hIL-7 administered weekly for 3 weeks. The study drug was well tolerated with only one patient developing acute skin GVHD. At baseline, patients were profoundly lymphopenic. CYT107 induced a doubling in CD4(+) and CD8(+) T cells. The main effect of IL-7 was an expansion of effector memory T cells, the predominant subset identified in our patients. There was no significant effect on CD4(+)CD25(+)FoxP3(+) T cells, NK, or B cells. Importantly, we not only saw quantitative increases in T cells after a short course of IL-7 but also demonstrated an increase in functional T cells, including viral-specific T cells that recognize CMV. Enhanced TCR diversity was also observed after treatment. Our results indicate that r-hIL-7 can enhance immune recovery after a T cell-depleted allo-HSCT without causing significant GVHD or other serious toxicity (www.clinicaltrials.gov; NCT00684008).


Assuntos
Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Interleucina-7/uso terapêutico , Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Área Sob a Curva , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Terapia Combinada , Relação Dose-Resposta a Droga , Feminino , Rearranjo Gênico do Linfócito T , Doença Enxerto-Hospedeiro/induzido quimicamente , Neoplasias Hematológicas/imunologia , Humanos , Interleucina-7/genética , Interleucina-7/farmacocinética , Subunidade alfa de Receptor de Interleucina-7/imunologia , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo , Resultado do Tratamento
9.
Mol Ther Oncol ; 32(3): 200862, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39308793

RESUMO

Despite therapeutic efficacy observed with immune checkpoint blockade in advanced melanoma, many tumors do not respond to treatment, representing a need for new therapies. Here, we have generated chimeric antigen receptor (CAR) T cells targeting TYRP1, a melanoma differentiation antigen expressed on the surface of melanomas, including rare acral and uveal melanomas. TYRP1-targeted CAR T cells demonstrate antigen-specific activation and cytotoxic activity in vitro and in vivo against human melanomas independent of the MHC alleles and expression. In addition, the toxicity to pigmented normal tissues observed with T lymphocytes expressing TYRP1-targeted TCRs was not observed with TYRP1-targeted CAR T cells. Anti-TYRP1 CAR T cells provide a novel means to target advanced melanomas, serving as a platform for the development of similar novel therapeutic agents and as a tool to interrogate the immunobiology of melanomas.

10.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37891002

RESUMO

We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Antígenos de Neoplasias
11.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215748

RESUMO

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transdução de Sinais , Imunoterapia , Apresentação de Antígeno , Antígeno B7-H1/metabolismo , Microambiente Tumoral
12.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106631

RESUMO

In addition to playing a major role in tumor cell biology, p53 generates a microenvironment that promotes antitumor immune surveillance via tumor-associated macrophages. We examined whether increasing p53 signaling in the tumor microenvironment influences antitumor T cell immunity. Our findings indicate that increased p53 signaling induced either pharmacologically with APR-246 (eprenetapopt) or in p53-overexpressing transgenic mice can disinhibit antitumor T cell immunity and augment the efficacy of immune checkpoint blockade. We demonstrated that increased p53 expression in tumor-associated macrophages induces canonical p53-associated functions such as senescence and activation of a p53-dependent senescence-associated secretory phenotype. This was linked with decreased expression of proteins associated with M2 polarization by tumor-associated macrophages. Our preclinical data led to the development of a clinical trial in patients with solid tumors combining APR-246 with pembrolizumab. Biospecimens from select patients participating in this ongoing trial showed that there was a suppression of M2-polarized myeloid cells and increase in T cell proliferation with therapy in those who responded to the therapy. Our findings, based on both genetic and a small molecule-based pharmacological approach, suggest that increasing p53 expression in tumor-associated macrophages reprograms the tumor microenvironment to augment the response to immune checkpoint blockade.


Assuntos
Inibidores de Checkpoint Imunológico , Macrófagos Associados a Tumor , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Quinuclidinas , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
13.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676831

RESUMO

Only a subset of cancer patients responds to checkpoint blockade inhibition in the clinic. Strategies to overcome resistance are promising areas of investigation. Targeting glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) has shown efficacy in preclinical models, but GITR engagement is ineffective in controlling advanced, poorly immunogenic tumors, such as B16 melanoma, and has not yielded benefit in clinical trials. The alkylating agent cyclophosphamide (CTX) depletes regulatory T cells (Tregs), expands tumor-specific effector T cells (Teffs) via homeostatic proliferation, and induces immunogenic cell death. GITR agonism has an inhibitory effect on Tregs and activates Teffs. We therefore hypothesized that CTX and GITR agonism would promote effective antitumor immunity. Here we show that the combination of CTX and GITR agonism controlled tumor growth in clinically relevant mouse models. Mechanistically, we show that the combination therapy caused tumor cell death, clonal expansion of highly active CD8+ T cells, and depletion of Tregs by activation-induced cell death. Control of tumor growth was associated with the presence of an expanded population of highly activated, tumor-infiltrating, oligoclonal CD8+ T cells that led to a diminished TCR repertoire. Our studies show that the combination of CTX and GITR agonism is a rational chemoimmunotherapeutic approach that warrants further clinical investigation.


Assuntos
Ciclofosfamida/uso terapêutico , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Imunossupressores/uso terapêutico , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia , Animais , Ciclofosfamida/farmacologia , Humanos , Imunossupressores/farmacologia , Camundongos
14.
Cell Rep ; 34(2): 108620, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440157

RESUMO

Phosphatidylserine (PS) is exposed on the surface of apoptotic cells and is known to promote immunosuppressive signals in the tumor microenvironment (TME). Antibodies that block PS interaction with its receptors have been shown to repolarize the TME into a proinflammatory state. Radiation therapy (RT) is an effective focal treatment of isolated solid tumors but is less effective at controlling metastatic cancers. We found that tumor-directed RT caused an increase in expression of PS on the surface of viable immune infiltrates in mouse B16 melanoma. We hypothesize that PS expression on immune cells may provide negative feedback to immune cells in the TME. Treatment with an antibody that targets PS (mch1N11) enhanced the anti-tumor efficacy of tumor-directed RT and improved overall survival. This combination led to an increase in proinflammatory tumor-associated macrophages. The addition of anti-PD-1 to RT and mch1N11 led to even greater anti-tumor efficacy and overall survival. We found increased PS expression on several immune subsets in the blood of patients with metastatic melanoma after receiving tumor-directed RT. These findings highlight the potential of combining PS targeting with RT and PD-1 pathway blockade to improve outcomes in patients with advanced-stage cancers.


Assuntos
Melanoma/radioterapia , Fosfatidilserinas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Melanoma/patologia , Camundongos , Microambiente Tumoral
15.
Cancer Cell ; 39(7): 973-988.e9, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34115989

RESUMO

Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Regulação Neoplásica da Expressão Gênica , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Microambiente Tumoral , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Prognóstico , Estudos Retrospectivos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 11(1): 4011, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782249

RESUMO

Tryptophan catabolism by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2 (IDO/TDO) promotes immunosuppression across different cancer types. The tryptophan metabolite L-Kynurenine (Kyn) interacts with the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) to drive the generation of Tregs and tolerogenic myeloid cells and PD-1 up-regulation in CD8+ T cells. Here, we show that the AHR pathway is selectively active in IDO/TDO-overexpressing tumors and is associated with resistance to immune checkpoint inhibitors. We demonstrate that IDO-Kyn-AHR-mediated immunosuppression depends on an interplay between Tregs and tumor-associated macrophages, which can be reversed by AHR inhibition. Selective AHR blockade delays progression in IDO/TDO-overexpressing tumors, and its efficacy is improved in combination with PD-1 blockade. Our findings suggest that blocking the AHR pathway in IDO/TDO expressing tumors would overcome the limitation of single IDO or TDO targeting agents and constitutes a personalized approach to immunotherapy, particularly in combination with immune checkpoint inhibitors.


Assuntos
Cinurenina/imunologia , Macrófagos/imunologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Tolerância Imunológica , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
17.
J Clin Invest ; 116(5): 1382-90, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16614758

RESUMO

T cells recognizing self antigens expressed by cancer cells are prevalent in the immune repertoire. However, activation of these autoreactive T cells is limited by weak signals that are incapable of fully priming naive T cells, creating a state of tolerance or ignorance. Even if T cell activation occurs, immunity can be further restricted by a dominant response directed at only a single epitope. Enhanced antigen presentation of multiple epitopes was investigated as a strategy to overcome these barriers. Specific point mutations that create altered peptide ligands were introduced into the gene encoding a nonimmunogenic tissue self antigen expressed by melanoma, tyrosinase-related protein-1 (Tyrp1). Deficient asparagine-linked glycosylation, which was caused by additional mutations, produced altered protein trafficking and fate that increased antigen processing. Immunization of mice with mutated Tyrp1 DNA elicited cross-reactive CD8(+) T cell responses against multiple nonmutated epitopes of syngeneic Tyrp1 and against melanoma cells. These multi-specific anti-Tyrp1 CD8(+) T cell responses led to rejection of poorly immunogenic melanoma and prolonged survival when immunization was started after tumor challenge. These studies demonstrate how rationally designed DNA vaccines directed against self antigens for enhanced antigen processing and presentation reveal novel self epitopes and elicit multi-specific T cell responses to nonimmunogenic, nonmutated self antigens, enhancing immunity against cancer self antigens.


Assuntos
Autoantígenos/química , Epitopos/química , Neoplasias/imunologia , Animais , Apresentação de Antígeno , Asparagina/química , Linfócitos T CD8-Positivos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oxirredutases/química , Oxirredutases/genética , Linfócitos T/imunologia
18.
Mol Ther ; 16(4): 773-81, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18301399

RESUMO

Successful approaches to tumor immunotherapy must overcome the physiological state of tolerance of the immune system to self-tumor antigens. Immunization with appropriate variants of syngeneic antigens can achieve this. However, improvements in vaccine design are needed for efficient cancer immunotherapy. Here we explore nine different chimeric vaccine designs, in which the antigen of interest is expressed as an in-frame fusion with polypeptides that impact antigen processing or presentation. In DNA immunization experiments in mice, three of nine fusions elevated relevant CD8(+) T-cell responses and tumor protection relative to an unfused melanoma antigen. These fusions were: Escherichia coli outer membrane protein A (OmpA), Pseudomonas aeruginosa exotoxin A, and VP22 protein of herpes simplex virus-1. The gains of immunogenicity conferred by the latter two are independent of epitope presentation by major histocompatibility complex class II (MHC II). This finding has positive implications for immunotherapy in individuals with CD4(+) T-cell deficiencies. We present evidence that antigen instability is not a sine qua non condition for immunogenicity. Experiments using two additional melanoma antigens identified different optimal fusion partners, thereby indicating that the benefits of fusion vectors remain antigen specific. Therefore large fusion vector panels such as those presented here can provide information to promote the successful advancement of gene-based vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas de DNA/imunologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Células COS , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Chlorocebus aethiops , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Exotoxinas/genética , Exotoxinas/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética , Vacinação , Vacinas de DNA/genética , Vacinas de DNA/uso terapêutico , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
19.
Nat Med ; 25(5): 759-766, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036879

RESUMO

Modulating T cell homeostatic mechanisms with checkpoint blockade can efficiently promote endogenous anti-tumor T cell responses1-11. However, many patients still do not benefit from checkpoint blockade12, highlighting the need for targeting of alternative immune pathways13. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is an attractive target for immunotherapy, owing to its capacity to promote effector T cell (Teff) functions14,15 and hamper regulatory T cell (Treg) suppression16-20. On the basis of the potent preclinical anti-tumor activity of agonist anti-GITR antibodies, reported by us and others16,21,22, we initiated the first in-human phase 1 trial of GITR agonism with the anti-GITR antibody TRX518 ( NCT01239134 ). Here, we report the safety profile and immune effects of TRX518 monotherapy in patients with advanced cancer and provide mechanistic preclinical evidence to rationally combine GITR agonism with checkpoint blockade in future clinical trials. We demonstrate that TRX518 reduces circulating and intratumoral Treg cells to similar extents, providing an easily assessable biomarker of anti-GITR activity. Despite Treg reductions and increased Teff:Treg ratios, substantial clinical responses were not seen. Similarly, in mice with advanced tumors, GITR agonism was not sufficient to activate cytolytic T cells due to persistent exhaustion. We demonstrate that T cell reinvigoration with PD-1 blockade can overcome resistance of advanced tumors to anti-GITR monotherapy. These findings led us to start investigating TRX518 with PD-1 pathway blockade in patients with advanced refractory tumors ( NCT02628574 ).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Imunoterapia/métodos , Animais , Biomarcadores Tumorais/imunologia , Desenho de Fármacos , Proteína Relacionada a TNFR Induzida por Glucocorticoide/antagonistas & inibidores , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Reguladores/imunologia
20.
Cancer Res ; 66(9): 4904-12, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651447

RESUMO

Immunization of mice with plasmids encoding xenogeneic orthologues of tumor differentiation antigens can break immune ignorance and tolerance to self and induce protective tumor immunity. We sought to improve on this strategy by combining xenogeneic DNA vaccination with an agonist anti-glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) monoclonal antibody (mAb), DTA-1, which has been shown previously both to costimulate activated effector CD4(+) and CD8(+) T cells and to inhibit the suppressive activity of CD4(+)CD25(+) regulatory T cells. We found that ligation of GITR with DTA-1 just before the second, but not the first, of 3 weekly DNA immunizations enhanced primary CD8(+) T-cell responses against the melanoma differentiation antigens gp100 and tyrosinase-related protein 2/dopachrome tautomerase and increased protection from a lethal challenge with B16 melanoma. This improved tumor immunity was associated with a modest increase in focal autoimmunity, manifested as autoimmune hypopigmentation. DTA-1 administration on this schedule also led to prolonged persistence of the antigen-specific CD8(+) T cells as well as to an enhanced recall CD8(+) T-cell response to a booster vaccination given 4 weeks after the primary immunization series. Giving the anti-GITR mAb both during primary immunization and at the time of booster vaccination increased the recall response even further. Finally, this effect on vaccine-induced CD8(+) T-cell responses was partially independent of CD4(+) T cells (both helper and regulatory), consistent with a direct costimulatory effect on the effector CD8(+) cells themselves.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/terapia , Receptores de Fator de Crescimento Neural/agonistas , Receptores do Fator de Necrose Tumoral/agonistas , Vacinas de DNA/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Sinergismo Farmacológico , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Imunização/métodos , Memória Imunológica , Melanoma Experimental/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fator de Crescimento Neural/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Vacinas de DNA/farmacologia , Antígeno gp100 de Melanoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA