Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177677

RESUMO

In this study, the integrated three-in-one (temperature, humidity, and wind speed) microsensor was made through the technology of the Micro-electro-mechanical Systems (MEMS) to measure three important physical quantities of the internal environment of the cold air pipe of the Heating, Ventilation and Air Conditioning (HVAC) in the factory, plan the installation positions of the integrated three-in-one microsensor and commercially available wind speed sensor required by the internal environment of the cold air pipe, and conduct the actual 310-h long term test and comparison. In the experiment, it was also observed that the self-made micro wind speed sensor had higher stability compared to the commercially available wind speed sensor (FS7.0.1L.195). The self-made micro wind speed sensor has a variation range of ±200 mm/s, while the commercially available wind speed sensor a variation range of ±1000 mm/s. The commercially available wind speed sensor (FS7.0.1L.195) can only measure the wind speed; however, the self-made integrated three-in-one microsensor can conduct real-time measurements of temperature and humidity according to the environment at that time, and use different calibration curves to know the wind speed. As a result, it is more accurate and less costly than commercially available wind speed sensors. The material cost of self-made integrated three-in-one microsensor includes chemicals, equipment usage fees, and wires. In the future, factories may install a large number of self-made integrated three-in-one microsensors in place of commercially available wind speed sensors. Through real-time wireless measurements, the self-made integrated three-in-one microsensors can achieve the control optimization of the HVAC cold air pipe's internal environment to improve the quality of manufactured materials.

2.
Phys Rev Lett ; 127(8): 084301, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477409

RESUMO

In this Letter, we theoretically propose and experimentally demonstrate a three-dimensional soundproof acoustic cage structure, hereby denoted as an acoustic metacage. The metacage is composed of six acoustic metamaterial slabs with open holes and hidden bypass space coiling tunnels connected to the holes. Band structure analysis reveals a novel physical mechanism to open a low-frequency broad partial band gap via the band folding in other directions, which can also be interpreted by an effective medium with indefinite effective mass density and negative effective modulus. Transmission loss in simulations and in the acoustic impedance tube are administered. Strikingly, we prove that the soundproofing effect of the metacage is robust against the airflow perturbation induced by a fan. Our work paves a road for low-frequency airborne soundproof structures in the presence of ventilation.

3.
Nat Commun ; 15(1): 8046, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277584

RESUMO

Invisibility cloaks that can suppress wave scattering by objects have attracted a tremendous amount of interest in the past two decades. In comparison to prior methods that were severely limited by narrow bandwidths, here we present a practical strategy to suppress sound scattering across an ultra-broad spectrum by leveraging illusion metamaterials. Consisting of a collection of subwavelength tunnels with precisely crafted internal structures, this illusion metamaterial has the ability to guide acoustic waves around the obstacles and accurately recreate the incoming wavefront on the exit surface. Remarkably, two ultra-broadband illusionary effects are produced, disappearing space and time shift. Sound scatterings are removed at all frequencies below a limit determined by the tunnel width, as confirmed by full-wave simulations and acoustic experiments. Our strategy represents a universal approach to solve the key bottleneck of bandwidth limitation in the field of cloaking in transmission, and establishes a metamaterial platform that enables the long-desired ultra-broadband sound manipulation such as acoustic camouflage and reverberation control, opening up exciting new possibilities in practical applications.

4.
Biomedicines ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39200099

RESUMO

This study focused on α-synuclein (α-syn) aggregation in the dorsomedial striatum (DMS) so as to investigate its role in the cognitive flexibility of Parkinson's disease (PD). Here, we investigated the cognitive flexibility by assessing reversal learning abilities in MPTP-induced subacute PD model mice and in C57BL/6J mice with α-syn aggregation in the DMS induced by adenovirus (AAV-SNCA) injection, followed by an analysis of the target protein's expression and distribution. PD mice exhibited impairments in reversal learning, positively correlated with the expression of phosphorylated α-syn in the DMS. Furthermore, the mice in the AAV-SNCA group exhibited reversal learning deficits and a reduction in acetylcholine levels, accompanied by protein alterations within the DMS. Notably, the administration of a muscarinic receptor 1 (M1R) agonist was able to alleviate the aforementioned phenomenon. These findings suggest that the impaired cognitive flexibility in PD may be attributed to the diminished activation of acetylcholine to M1R caused by α-syn aggregation.

5.
Biochem Pharmacol ; 223: 116194, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583812

RESUMO

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Assuntos
Compostos de Anilina , Diterpenos , Tiofenos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Tiorredoxina Redutase 1 , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
6.
Micromachines (Basel) ; 13(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36557497

RESUMO

A wireless flexible air velocity microsensor was developed by using micro-electro-mechanical systems (MEMS) technology. Polyimide (PI) material was selected for the waterproof and oilproof requirements of the cold air duct environment of heating, ventilation, and air conditioning (HVAC) systems, and then a wireless flexible micro air velocity sensor was completed. To obtain real-time wireless measurements of the air velocity inside the cold air ducts of an HVAC system, and to create a measurements database, the deployment locations and quantity of micro air velocity sensors for the internal environment of the cold air ducts were planned. A field domain verification was performed to optimize the internal environment control of the cold air ducts of ventilation and air conditioning systems and to enhance the quality and reliability of process materials. This study realized real-time monitoring of velocity in the HVAC ducts of a chemical-fiber plant. A commercial velocity sensor (FS7.0.1L.195) was purchased and a micro-electro-mechanical systems (MEMS) approach was also used to develop a home-built micro air velocity sensor, to optimize the provision of the commercial sensors and our home-built micro air velocity sensor. Comparing the specifications of the two commercially available sensors with our home-built micro air velocity sensor, the results show that the home-built micro air velocity sensor has the advantages of fast response time, simultaneous sensing of three important physical quantities, and low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA