Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Prolif ; : e13680, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38817099

RESUMO

Leydig cell failure (LCF) caused by gene mutations leads to testosterone deficiency, infertility and reduced physical function. Adeno-associated virus serotype 8 (AAV8)-mediated gene therapy shows potential in treating LCF in the Lhcgr-deficient (Lhcgr-/-) mouse model. However, the gene-treated mice still cannot naturally sire offspring, indicating the modestly restored testosterone and spermatogenesis in AAV8-treated mice remain insufficient to support natural fertility. Recognizing this, we propose that enhancing gene delivery could yield superior results. Here, we screened a panel of AAV serotypes through in vivo transduction of mouse testes and identified AAVDJ as an impressively potent vector for testicular cells. Intratesticular injection of AAVDJ achieved markedly efficient transduction of Leydig cell progenitors, marking a considerable advance over conventional AAV8 vectors. AAVDJ-Lhcgr gene therapy was well tolerated and resulted in significant recovery of testosterone production, substantial improvement in sexual development, and remarkable restoration of spermatogenesis in Lhcgr-/- mice. Notably, this therapy restored fertility in Lhcgr-/- mice through natural mating, enabling the birth of second-generation. Additionally, this treatment led to remarkable improvements in adipose, muscle, and bone function in Lhcgr-/- mice. Collectively, our findings underscore AAVDJ-mediated gene therapy as a promising strategy for LCF and suggest its broader potential in addressing various reproductive disorders.

2.
Adv Sci (Weinh) ; 11(25): e2400426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666466

RESUMO

Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local ß-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.


Assuntos
Ácido 3-Hidroxibutírico , Barreira Hematoencefálica , Modelos Animais de Doenças , AVC Isquêmico , Proteína da Zônula de Oclusão-1 , Animais , Barreira Hematoencefálica/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Epigênese Genética/genética , Masculino , Camundongos Endogâmicos C57BL , Hidroximetilglutaril-CoA Sintase , Transportadores de Ácidos Monocarboxílicos , Simportadores
3.
Cell Rep Med ; 3(11): 100792, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270285

RESUMO

Leydig cell failure (LCF) caused by gene mutation results in testosterone deficiency and infertility. Serum testosterone levels can be recovered via testosterone replacement; however, established therapies have shown limited success in restoring fertility. Here, we use a luteinizing hormone/choriogonadotrophin receptor (Lhcgr)-deficient mouse model of LCF to investigate the feasibility of gene therapy for restoring testosterone production and fertility. We screen several adeno-associated virus (AAV) serotypes and identify AAV8 as an efficient vector to drive exogenous Lhcgr expression in progenitor Leydig cells through interstitial injection. We observe considerable testosterone recovery and Leydig cell maturation after AAV8-Lhcgr treatment in pubertal Lhcgr-/- mice. Of note, this gene therapy partially recovers sexual development, substantially restores spermatogenesis, and effectively produces fertile offspring. Furthermore, these favorable effects can be reproduced in adult Lhcgr-/- mice. Our proof-of-concept experiments in the mouse model demonstrate that AAV-mediated gene therapy may represent a promising therapeutic approach for patients with LCF.


Assuntos
Células Intersticiais do Testículo , Receptores do LH , Masculino , Camundongos , Animais , Células Intersticiais do Testículo/metabolismo , Receptores do LH/genética , Dependovirus/genética , Gonadotropina Coriônica/genética , Testosterona , Fertilidade/genética , Modelos Animais de Doenças , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA