Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 133(6): 508-531, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589160

RESUMO

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.


Assuntos
Hipertensão Pulmonar , Doenças Vasculares , Humanos , Camundongos , Ratos , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Células Endoteliais , Mitocôndrias , Modelos Animais de Doenças , Endotélio , Ubiquitinas , Proteínas de Membrana , Proteínas Mitocondriais
2.
Ecotoxicol Environ Saf ; 270: 115849, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134639

RESUMO

Recent research has highlighted a correlation between exposure to ambient fine particulate matter (PM2.5) and the development of systemic insulin resistance (IR) along with an elevated risk of diabetes. Ceramide has emerged as one of the pathogenic mechanisms contributing to IR. The inhibition of acid sphingomyelinase (ASMase) activity by desipramine (DES) has been shown to effectively reduce ceramide levels. In the present study, 24 female C57BL/6 N mice were randomized into one of the four groups: the filtered air exposure (FA) group, the concentrated PM2.5 exposure (PM) group, the concentrated PM2.5 treated with low-dose DES (DL) group, and the concentrated PM2.5 treated with high-dose DES (DH) group. The PM, DL and DH groups were exposed to PM2.5 for an 8-week period within a whole-body exposure system. The study encompassed extensive examinations of glucose homeostasis, liver lipid profile, ceramide pathway, and insulin signaling pathway. Our results demonstrated that PM2.5 exposure caused impaired glucose tolerance, elevated ceramide levels, increased phosphorylation PP2A, reduced Akt phosphorylation, and hindered GLUT2 expression. Remarkably, DES administration mitigated PM2.5-induced IR by effectively lowering ceramide levels. In conclusion, the reduction of ceramide levels by DES may be a promising therapeutic strategy for coping PM2.5-induced IR.


Assuntos
Poluentes Atmosféricos , Resistência à Insulina , Feminino , Animais , Camundongos , Material Particulado/toxicidade , Desipramina/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Poluentes Atmosféricos/toxicidade
3.
Ecotoxicol Environ Saf ; 280: 116589, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878334

RESUMO

Both epidemiological and experimental studies increasingly show that exposure to ambient fine particulate matter (PM2.5) is related to the occurrence and development of chronic diseases, such as metabolic diseases. However, whether PM2.5 has "exposure memory" and how these memories affect chronic disease development like hepatic metabolic homeostasis are unknown. Therefore, we aimed to explore the effects of exposure transition on liver cholesterol and bile acids (BAs) metabolism in mice. In this study, C57BL/6 mice were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure facility for an initial period of 10 weeks, followed by another 8 weeks of exposure switch (PM2.5 to FA and FA to PM2.5) comparing to non-switch groups (FA to FA and PM2.5 to PM2.5), which were finally divided into four groups (FF of FA to FA, PP of PM2.5 to PM2.5, PF of PM2.5 to FA, and FP of FA to PM2.5). Our results showed no significant difference in food intake, body composition, glucose homeostasis, and lipid metabolism between FA and PM2.5 groups after the initial exposure before the exposure switch. At the end of the exposure switch, the mice switched from FA to PM2.5 exposure exhibited a high sensitivity to late-onset PM2.5 exposure, as indicated by significantly elevated hepatic cholesterol levels and disturbed BAs metabolism. However, the mice switched from PM2.5 to FA exposure retained a certain memorial effects of previous PM2.5 exposure in hepatic cholesterol levels, cholesterol metabolism, and BAs metabolism. Furthermore, 18-week PM2.5 exposure significantly increased hepatic free BAs levels, which were completely reversed by the FA exposure switch. Finally, the changes in small heterodimeric partner (SHP) and nuclear receptor subfamily 5 group A member 2 (LRH1) in response to exposure switch mechanistically explained the above alterations. Therefore, mice switching from PM2.5 exposure to FA showed only a weak memory of prior PM2.5 exposure. In contrast, the early FA caused mice to be more susceptible to subsequent PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Ácidos e Sais Biliares , Colesterol , Fígado , Camundongos Endogâmicos C57BL , Material Particulado , Animais , Material Particulado/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Colesterol/metabolismo , Camundongos , Ácidos e Sais Biliares/metabolismo , Poluentes Atmosféricos/toxicidade , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Tamanho da Partícula
4.
Ecotoxicol Environ Saf ; 278: 116423, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705039

RESUMO

Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.


Assuntos
Tecido Adiposo Marrom , Poluentes Atmosféricos , Senescência Celular , Camundongos Endogâmicos C57BL , Mitocôndrias , Material Particulado , Animais , Material Particulado/toxicidade , Tecido Adiposo Marrom/efeitos dos fármacos , Masculino , Camundongos , Senescência Celular/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos
5.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474239

RESUMO

It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-ß1 (TGF-ß1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated ß-galactosidase (SA-ß-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.


Assuntos
Fibrose Pulmonar , Masculino , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Temperatura Alta , Camundongos Endogâmicos C57BL , Pulmão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Senescência Celular , Nucleotidiltransferases/metabolismo
6.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892255

RESUMO

The disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep-/- mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The ß-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Hepatócitos , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Fígado/metabolismo , Ritmo Circadiano/genética , Hepatócitos/metabolismo , Fenótipo , Masculino , Metaboloma , Deleção de Genes , Lipogênese/genética
7.
Environ Sci Technol ; 57(42): 15835-15845, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831419

RESUMO

To investigate the association of long-term exposure to ambient air pollution with the risk of allergic rhinitis (AR), we performed a longitudinal analysis of 379,488 participants (47.4% women) free of AR at baseline in the UK Biobank. The annual average concentrations of PM2.5, PMcoarse, PM10, NO2, and NOx were estimated by land use regression models. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). A weighted polygenic risk score was constructed. During a median follow-up period of 12.5 years, 3095 AR cases were identified. We observed significant associations between the risk of AR and PM2.5 (HR: 1.51, 95% CI: 1.27-1.79, per 5 µg/m3), PMcoarse (HR: 1.28, 95% CI: 1.06-1.55, per 5 µg/m3), PM10 (HR: 1.45, 95% CI: 1.20-1.74, per 10 µg/m3), NO2 (HR: 1.14, 95% CI: 1.09-1.19, per 10 µg/m3), and NOx (HR: 1.10, 95% CI: 1.05-1.15, per 20 µg/m3). Moreover, participants with high air pollution combined with high genetic risk showed the highest risk of AR, although no multiplicative or additive interaction was observed. In conclusion, long-term exposure to air pollutants was associated with an elevated risk of AR, particularly in high-genetic-risk populations, emphasizing the urgent need to improve air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Rinite Alérgica , Humanos , Feminino , Masculino , Material Particulado/análise , Estudos Prospectivos , Dióxido de Nitrogênio/análise , Estudos de Coortes , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Rinite Alérgica/epidemiologia
8.
Ecotoxicol Environ Saf ; 255: 114797, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933486

RESUMO

The consumption of disposable materials is booming with the rapid development of urbanization and industrialization, which may inevitably cause the release of toxic and harmful substances during use of them in daily life. This study was to estimate element levels such as Beryllium (Be), Vanadium (V), Zinc (Zn), Manganese (Mn), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Cobalt (Co), Antimony (Sb), Barium (Ba), Lead (Pb), Iron (Fe), Copper (Cu), and Selenium (Se) in leachate and subsequently assess the health risk of exposure to those disposable products such as paper and plastic food containers. We found that a large amount of metals was released from disposable food containers in hot water, and the order of metal concentration is Zn > Ba > Fe > Mn > Ni > Cu > Sb > Cr > Se > Be > Pb > Co > V > Cd. Additionally, the hazard quotient (HQ) of metals in young adults were less than 1, and were decreased in the order of Sb > Fe > Cu > Be > Ni > Cr > Pb > Zn > Se > Cd > Ba > Mn > V > Co. Furthermore, the excess lifetime cancer risk (ELCR) results of Ni and Be indicated that chronic exposure to Ni and Be may have a non-negligible carcinogenic risk. These findings suggest that potential health risk of metals may exist for the individuals to use disposable food containers under high temperature environment.


Assuntos
Cádmio , Metais Pesados , Humanos , Embalagem de Alimentos , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise , Cromo , Níquel , Manganês , Zinco , Cobalto/toxicidade , Bário , Medição de Risco/métodos , Monitoramento Ambiental
9.
Ecotoxicol Environ Saf ; 249: 114456, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321675

RESUMO

Recent studies have shown a strong correlation between ambient fine particulate matter (PM2.5) exposure and diabetes risk, including abnormal lipid accumulation and systemic insulin resistance (IR). Hawthorn total flavonoids (HF) are the main groups of active substances in Hawthorn, which showed anti-hyperlipidemic and anti-hyperglycemic effects. Therefore, we hypothesized that HF may attenuate PM2.5-induced IR and abnormal lipid accumulation. Female C57BL/6 N mice were randomly assigned to the filtered air exposure (FA) group, concentrated PM2.5 exposure (PM) group, PM2.5 exposure maintained on a low-dose HF diet (LHF) group, and PM2.5 exposure maintained on a high-dose HF diet (HHF) group for an 8-week PM2.5 exposure using a whole-body exposure device. Body glucose homeostasis, lipid profiles in the liver and serum, and enzymes responsible for hepatic lipid metabolism were measured. We found that exposure to PM2.5 impaired glucose tolerance and insulin sensitivity. In addition, triacylglycerol (TAG) in serum elevated, whereas hepatic TAG levels were decreased after PM2.5 exposure, accompanied by inhibited fatty acid uptake, lipogenesis, and lipolysis in the liver. HF administration, on the other hand, balanced the hepatic TAG levels by increasing fatty acid uptake and decreasing lipid export, leading to alleviated systemic IR and hyperlipidemia in PM2.5-exposed mice. Therefore, HF administration may be an effective strategy to protect against PM2.5-induced IR and metabolic abnormalities of lipids.


Assuntos
Poluentes Atmosféricos , Crataegus , Resistência à Insulina , Feminino , Animais , Camundongos , Material Particulado , Flavonoides , Camundongos Endogâmicos C57BL , Lipídeos , Ácidos Graxos
10.
Molecules ; 28(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894583

RESUMO

As a common emerging environmental pollutant, microplastics (MPs) have been detected in a variety of environmental media and human bodies. The potential toxic effects and mechanisms of MPs need to be revealed urgently. MPs can be deposited in the kidney, and exposure to high doses of MPs can cause nephrotoxicity in experimental animals. In this study, we investigated the effects of exposure to polystyrene microplastics (PS-MPs) at environmentally relevant doses (0.1 and 1 mg/L) on kidney structure, function, and transcriptome in mice. We found that mice exposed to PS-MPs in drinking water for eight weeks had no change in body weight or kidney coefficient. PS-MPs administration decreased the levels of blood urea nitrogen (BUN) in mice, while serum creatinine (CRE) and uric acid (UA) concentrations were unaffected. Through using periodic acid-Schiff (PAS) and Masson staining, we discovered that the glomerular tuft area increased in the PS-MP-treated mice, while the degree of renal fibrosis remained unchanged. Furthermore, renal cortex transcriptomic analysis identified 388 and 303 differentially expressed genes (DEGs) in the 0.1 and 1 mg/L dose groups, respectively. The DEGs were highly enriched in mitochondrial-related terms and pathways of thermogenesis and oxidative phosphorylation. Moreover, protein-protein interaction (PPI) network analysis revealed that cytochrome b-c1 complex subunit 10 (UQCR11) and cytochrome c oxidase subunit 3 (MT-CO3) were important node proteins. These findings suggest that environmental exposure to MPs can cause abnormalities in renal structure and filtration function and that long-term exposure to MPs may be a risk factor for renal disease.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Transcriptoma , Microplásticos/toxicidade , Rim , Glomérulos Renais , Poliestirenos/toxicidade
11.
Ecotoxicol Environ Saf ; 234: 113368, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247710

RESUMO

BACKGROUND AND AIMS: Plenty of literature has documented that fine particulate matter (PM2.5) exposure is related to blood pressure (BP) elevation. Vascular dysfunction is the initiation of cardiovascular diseases, such as hypertension. This thesis set out to assess the role of Toll-like receptor 3 (TLR3) in the increase in BP induced by PM2.5. METHODS: C57BL/6 and TLR3 deficient (TLR3-/-) male mice were randomly allocated to filtered air chamber or real-world inhaled concentrated PM2.5 chamber. BP was evaluated using non-invasive BP recordings. After euthanasia, the aortas and small mesenteric arteries (SMAs) were isolated, and vascular tone was measured using a wire myograph. Leucocytes were detached to assess myeloid-derived suppressor cells using flow cytometry. siRNA transfection was performed to silence TLR3 expression in the human vascular endothelial cells incubated with PM2.5. The gene expression levels of inflammation, adhesion molecules, and oxidative stress in the aortas were assessed by quantitative PCR. RESULTS: Exposure to PM2.5 increased mouse BP, and TLR3 deficiency protected against PM2.5 exposure-induced BP increase. Additionally, the injury of vascular function in the aortas and SMAs was inhibited in TLR3-/- mice. The intercellular adhesion molecule-1 (ICAM-1) was attenuated in TLR3-/- mice, accompanied by the inhibition of inflammatory and oxidized genes of the aortas, such as F4/80, interleukin-6, interleukin-1 beta, and NADPH oxidase 4. In vitro, the enhanced mRNA expression of genes encoding inflammation, oxidative stress, and ICAM-1 by PM2.5 was inhibited by TLR3 silence as well. CONCLUSIONS: PM2.5 exposure increased BP via TLR3 activation and impaired vascular function.

12.
Ecotoxicol Environ Saf ; 238: 113569, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512470

RESUMO

Sertoli cells play a pivotal role in the complex spermatogenesis process. This study aimed to investigate the effects of PM2.5 on Sertoli cells using the TM4 cell line and a real time whole-body PM2.5 exposure mouse model, and further explore the underlying mechanisms through the application of metabolomics and transcriptomics. The results in vivo and in vitro showed that PM2.5 reduced Sertoli cells number in seminiferous tubules and inhibited cell proliferation. PM2.5 exposure also induced Sertoli cell dysfunction by increasing androgen binding protein (ABP) concentration, reducing the blood-testis barrier (BTB)-related protein expression, and decreasing glycolysis capacity and lactate production. The results of transcriptomics, metabolomics, and integrative analysis of multi-omics in the TM4 Sertoli cells revealed the activation of xenobiotic metabolism, and the disturbance of glutathione and purine metabolism after PM2.5 exposure. Further tests verified the reduced GSH/GSSG ratio and the elevation of xanthine oxidase (XO) activity in the PM2.5-exposed TM4 cells, indicating that excessive reactive oxygen species (ROS) was generated via metabolic disorder caused by PM2.5. Moreover, the redox imbalance was proved by the increase in the mitochondrial ROS level, superoxide dismutase (SOD) and catalase (CAT) activity, as well as the activation of the Nrf2 antioxidative pathway. Further study found that the redox imbalance caused by PM2.5 induced DNA damage response and cell cycle arrest. Additionally, PM2.5 induced ferroptosis through iron overload and lipid peroxidation. Taken all together, our study provided new insights for understanding proliferation inhibition and dysfunction of TM4 Sertoli cells exposed to PM2.5 via metabolic disorder and redox imbalance-mediated DNA damage response and ferroptosis.


Assuntos
Ferroptose , Células de Sertoli , Animais , Antioxidantes/metabolismo , Apoptose , Proliferação de Células , Dano ao DNA , Glutationa/metabolismo , Masculino , Metabolômica , Oxirredução , Material Particulado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Células de Sertoli/metabolismo , Transcriptoma
13.
Ecotoxicol Environ Saf ; 239: 113680, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617897

RESUMO

Recent studies have shown that some adverse pregnancy outcomes, especially intrauterine growth restriction (IUGR), are associated with gestational exposure to ambient fine particulate matter (PM2.5). However, potential mechanism remains to be elucidated. In the present study, pregnant C57BL/6 mice were randomly assigned to be exposed to either filtered air or ambient PM2.5 in the gestation period via a concentrated whole-body exposure system. We found that gestational PM2.5 exposure exerted no effect on implantation, preterm delivery, as well as fetal resorption and death. However, in utero fetal exposure to PM2.5 showed a significant reduction in body weight and crown-rump length on GD13 and GD18. Meanwhile, maternal blood sinusoid in placenta was markedly reduced along with abnormal expression of placental nutrient transporters and growth hormone in dams exposed to PM2.5. Additional tests showed gestational PM2.5 exposure decreased autophagy-related protein levels and inhibited autophagy flux mainly on GD15. Correspondingly, AMPK/mTOR signaling pathway, a critical negative regulator of autophagy, was activated in placenta on GD15 by PM2.5 exposure as well. These findings provide evidences that placental developmental disorder caused by autophagy inhibition might be an important mechanism for the growth restriction caused by PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Animais , Autofagia , Feminino , Desenvolvimento Fetal , Humanos , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/análise , Placenta/metabolismo , Gravidez , Resultado da Gravidez
14.
Ecotoxicol Environ Saf ; 222: 112524, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274836

RESUMO

Emerging evidence supports that exposure to ambient fine particulate matter (PM2.5) is associated with the metabolic syndrome. As the main neuroendocrine axis in mammals, the hypothalamic-pituitary-adrenal (HPA) axis's circadian rhythm (CR) plays an essential role in regulating metabolic homeostasis. Our previous studies found that ambient PM2.5 exposure caused CR disorder of the critical enzymes involved in lipid metabolism in mouse liver and adipose tissues. However, the impact of ambient PM2.5 exposure on the HPA axis is not fully illustrated yet. Male C57BL/6 mice were randomly exposed to ambient PM2.5 or filtered air for ten weeks via a whole-body exposure system. Rhythmic oscillations of clock genes in the hypothalamus and adrenal gland were characterized. The effects of ambient PM2.5 exposure on clock gene expression and rhythmic expression of molecules related to glucocorticoid synthesis were also examined. Firstly, a more robust CR of clock genes was demonstrated in the adrenal gland than that in the hypothalamus. Secondly, PM2.5 exposure significantly inhibited the expression of Clock at ZT8 in the hypothalamus. However, both circadian oscillation and expression levels of Bmal1, Cry1, Cry2, and Rorα were increased significantly by ambient PM2.5 exposure in the adrenal gland. Moreover, abnormal rhythmic oscillation patterns of corticotropin-releasing hormone and adrenocorticotropic hormone were observed after ambient PM2.5 exposure, with no change at the expression levels. Finally, the expression of Cyp11b1 was markedly decreased at ZT0 in the adrenal gland of PM2.5 exposed mice. Our findings provide new insights into the ambient PM2.5 exposure-induced metabolic syndrome from the perspective of CR disturbances.


Assuntos
Sistema Hipotálamo-Hipofisário , Material Particulado , Animais , Ritmo Circadiano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Sistema Hipófise-Suprarrenal
15.
Ecotoxicol Environ Saf ; 219: 112314, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33989920

RESUMO

PM2.5 infiltrates into circulation and increases the risk of systemic vascular dysfunction. As the first-line barrier against external stimuli, the molecular mechanism of the biological response of vascular endothelial cells to PM2.5 exposure remains unclear. In this study, 4-week-old mice were exposed to Hangzhou 'real' airborne PM2.5 for 2 months and were found to display bronchial and alveolar damage. Importantly, in the present study, we have demonstrated that Cdk5 deficit induced peripheral vasoconstriction through angiotensin II type 1 receptor under angiotensin II stimulation in Cdh5-cre;Cdk5f/n mice. In the brain, Cdk5 deficit increased the myogenic activity in the medullary arterioles under external pressure. On the other hand, no changes in cerebral blood flow and behavior patterns were observed in the Cdh5-cre;Cdk5f/n mice exposed to PM2.5. Therefore, our current findings indicate that CDK5 plays an important role in endothelium cell growth, migration, and molecular transduction, which is also a sensor for the response of vascular endothelial cells to PM2.5.


Assuntos
Poluentes Atmosféricos/toxicidade , Quinase 5 Dependente de Ciclina/metabolismo , Vasoconstrição/fisiologia , Poluição do Ar , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Camundongos , Receptor Tipo 1 de Angiotensina/genética , Ativação Transcricional , Regulação para Cima
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(6): 555-562, 2021 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34130775

RESUMO

OBJECTIVE: To investigate the incidence rate and risk factors for metabolic bone disease of prematurity (MBDP) in very low birth weight/extremely low birth weight (VLBW/ELBW) infants. METHODS: The medical data of 61 786 neonates from multiple centers of China between September 1, 2013 and August 31, 2016 were retrospectively investigated, including 504 VLBW/ELBW preterm infants who met the inclusion criteria. Among the 504 infants, 108 infants diagnosed with MBDP were enrolled as the MBDP group and the remaining 396 infants were enrolled as the non-MBDP group. The two groups were compared in terms of general information of mothers and preterm infants, major diseases during hospitalization, nutritional support strategies, and other treatment conditions. The multivariate logistic regression analysis was used to investigate the risk factors for MBDP. RESULTS: The incidence rate of MBDP was 19.4% (88/452) in VLBW preterm infants and 38.5% (20/52) in ELBW preterm infants. The incidence rate of MBDP was 21.7% in preterm infants with a gestational age of < 32 weeks and 45.5% in those with a gestational age of < 28 weeks. The univariate analysis showed that compared with the non-MBDP group, the MBDP group had significantly lower gestational age and birth weight, a significantly longer length of hospital stay, and a significantly higher incidence rate of extrauterine growth retardation (P < 0.05). Compared with the non-MBDP group, the MBDP group had significantly higher incidence rates of neonatal sepsis, anemia, hypocalcemia, and retinopathy of prematurity (P < 0.05). The MBDP group had a significantly lower mean feeding speed, a significantly higher age when reaching total enteral feeding, and a significantly longer duration of parenteral nutrition (P < 0.05). The use rate of caffeine citrate in the MBDP group was significantly higher, but the use rate of erythropoietin was significantly lower than that in the non-MBDP group (P < 0.05). The multivariate logistic regression analysis showed that gestational age < 32 weeks, hypocalcemia, extrauterine growth retardation at discharge, and neonatal sepsis were risk factors for MBDP (P < 0.05). CONCLUSIONS: A lower gestational age, hypocalcemia, extrauterine growth retardation at discharge, and neonatal sepsis may be associated an increased risk of MBDP in VLBW/ELBW preterm infants. It is necessary to strengthen perinatal healthcare, avoid premature delivery, improve the awareness of the prevention and treatment of MBDP among neonatal pediatricians, and adopt positive and reasonable nutrition strategies and comprehensive management measures for preterm infants.


Assuntos
Doenças Ósseas Metabólicas , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Peso ao Nascer , Doenças Ósseas Metabólicas/epidemiologia , Doenças Ósseas Metabólicas/etiologia , China/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Gravidez , Estudos Retrospectivos , Fatores de Risco
17.
Part Fibre Toxicol ; 17(1): 14, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321544

RESUMO

BACKGROUND & AIMS: Emerging evidence supports ambient fine particulate matter (PM2.5) exposure is associated with insulin resistance (IR) and hepatic lipid accumulation. In this study, we aimed to evaluate the sex-dependent vulnerability in response to PM2.5 exposure and investigate the underlying mechanism by which PM2.5 modulates hepatic lipid metabolism. METHODS: Both male and female C57BL/6 mice were randomly assigned to ambient PM2.5 or filtered air for 24 weeks via a whole body exposure system. High-coverage quantitative lipidomics approaches and liquid chromatography-mass spectrometry techniques were performed to measure hepatic metabolites and hormones in plasma. Metabolic studies, histological analyses, as well as gene expression levels and molecular signal transduction analysis were applied to examine the effects and mechanisms by which PM2.5 exposure-induced metabolic disorder. RESULTS: Female mice were more susceptible than their male counterparts to ambient PM2.5 exposure-induced IR and hepatic lipid accumulation. The hepatic lipid profile was changed in response to ambient PM2.5 exposure. Levels of hepatic triacylglycerols (TAGs), free fatty acids (FFAs) and cholesterol were only increased in female mice from PM group compared to control group. Plasmalogens were dysregulated in the liver from PM2.5-exposed mice as well. In addition, exposure to PM2.5 led to enhanced hepatic ApoB and microsomal triglyceride transport protein expression in female mice. Finally, PM2.5 exposure inhibited hypothalamus-pituitary-adrenal (HPA) axis and decreased glucocorticoids levels, which may contribute to the vulnerability in PM2.5-induced metabolic dysfunction. CONCLUSIONS: Ambient PM2.5 exposure inhibited HPA axis and demonstrated sex-associated differences in its effects on IR and disorder of hepatic lipid metabolism. These findings provide new mechanistic evidence of hormone regulation in air pollution-mediated metabolic abnormalities of lipids and more personalized care should be considered in terms of sex-specific risk factors.


Assuntos
Poluentes Atmosféricos/toxicidade , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Material Particulado/toxicidade , Caracteres Sexuais , Animais , Feminino , Hormônios Esteroides Gonadais/sangue , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Distribuição Aleatória
18.
Nutr Neurosci ; 22(7): 453-463, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29325505

RESUMO

Globally, Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the elderly population, the hallmark of which is amyloid ß (Aß) peptide. Energy metabolism and AD pathogenesis are believed to influence one another. Different cholesterol levels are thought to influence various steps in neurotoxic Aß generation, including amyloid precursor protein (APP) proteolysis and the corresponding activities of α-, ß-, and γ-secretases. In addition, cholesterol has been proved to mediate Aß metabolism, such as its fibrillation, transportation, degradation, and clearance processes. The current review discusses in detail the intimate interaction between the cholesterol level and the various aspects of APP proteolysis and Aß metabolism.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Neurônios/metabolismo , Proteólise , Animais , Humanos
19.
Acta Paediatr ; 108(1): 70-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080290

RESUMO

AIM: The attitudes of neonatologists towards the active management of extremely premature infants in a developing country like China are uncertain. METHODS: A web-based survey was sent to neonatologists from 16 provinces representing 59.6% (824.2 million) of the total population of China on October 2015 and December 2017. RESULTS: A total of 117 and 219 responses were received in 2015 and 2017, respectively. Compared to 2015, respondents in 2017 were more likely to resuscitate infants <25 weeks of gestation (86% vs. 72%; p < 0.05), but few would resuscitate infants ≤23 weeks of gestation in either epoch (10% vs. 6%). In both epochs, parents were responsible for >50% of the costs of intensive care, but in 2017, significantly fewer clinicians would cease intensive care (75% vs. 88%; p < 0.05) and more would request for economic aid (40% vs. 20%; p < 0.05) if parents could not afford to pay. Resource availability (e.g. ventilators) was not an important factor in either initiation or continuation of intensive care (~60% in both epochs). CONCLUSION: Cost is an important factor in the initiation and continuation of neonatal intensive care in a developing country like China. Such factors need to be taken into consideration when interpreting outcome data from these regions.


Assuntos
Atitude do Pessoal de Saúde , Custos Hospitalares , Lactente Extremamente Prematuro , Unidades de Terapia Intensiva Neonatal/economia , Equipe de Assistência ao Paciente/economia , Inquéritos e Questionários , China , Tomada de Decisão Clínica , Países em Desenvolvimento , Gerenciamento Clínico , Feminino , Recursos em Saúde/economia , Humanos , Recém-Nascido , Masculino , Neonatologistas , Avaliação de Resultados em Cuidados de Saúde , Pobreza , Estudos Retrospectivos , Medição de Risco
20.
Ecotoxicol Environ Saf ; 174: 344-352, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849654

RESUMO

PM2.5 particles in air pollution have been widely considered associated with respiratory and cardiovascular diseases. Recent studies have shown that PM2.5 can also cause central nervous system (CNS) diseases, including a variety of neurodegenerative diseases, such as Alzheimer's disease (AD). Activation of microglia in the central nervous system can lead to inflammatory and neurological damage. PM2.5 will reduce the methylation level of DNA and affect epigenetics. PM2.5 enters the human body through a variety of pathways to have pathological effects on CNS. For example, PM2.5 can destroy the integrity of the blood-brain barrier (BBB), so peripheral systemic inflammation easily crosses BBB and reaches CNS. The olfactory nerve is another way for PM2.5 particles to enter the brain. Surprisingly, PM2.5 can also enter the gastrointestinal tract, causing imbalances in the intestinal microecology to affect central nervous system diseases. The current work collected and discuss the mechanisms of PM2.5-induced CNS damage and PM2.5-induced neurodegenerative diseases.


Assuntos
Poluentes Atmosféricos/toxicidade , Doença de Alzheimer/induzido quimicamente , Monitoramento Ambiental/métodos , Material Particulado/toxicidade , Poluentes Atmosféricos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Humanos , Inflamação , Material Particulado/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA