Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Nanobiotechnology ; 22(1): 93, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443927

RESUMO

Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.


Assuntos
Células Endoteliais , Glioma , Humanos , Oxaliplatina/farmacologia , Peróxido de Hidrogênio , Glioma/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes , Ferritinas , Imunossupressores , Microambiente Tumoral
2.
J Nanobiotechnology ; 20(1): 251, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659239

RESUMO

BACKGROUND: At present, patients with myocardial infarction remain an increased risk for myocardial ischemia/reperfusion injury (MI/RI). There lacks effectively method to treat MI/RI in clinic. For the treatment of MI/RI, it is still a bottleneck to effectively deliver drug to ischemic myocardium. In this paper, a regulatory T cells (Tregs) biomimetic nanoparticle (CsA@PPTK) was prepared by camouflaging nanoparticle with platelet membrane. RESULTS: CsA@PPTK actively accumulated in ischemic myocardium of MI/RI mice. CsA@PPTK significantly scavenged reactive oxygen species (ROS) and increased the generation of Tregs and the ratio of M2 type macrophage to M1 type macrophage in ischemic myocardium. Moreover, CsA@PPTK significantly attenuated apoptosis of cardiomyocytes and reduced the infarct size and fibrosis area in ischemic myocardium. CsA@PPTK markedly decreased the protein expression of MMP-9 and increased the protein expression of CX43 in ischemic myocardium tissue. Subsequently, the remodeling of the left ventricle was significant alleviated, and heart function of MI/RI mice was markedly improved. CONCLUSION: CsA@PPTK showed significant therapeutic effect on MI/RI, and it has great potential application in the treatment of MI/RI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Animais , Apoptose , Biomimética , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Oxirredução
3.
J Nanobiotechnology ; 20(1): 256, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658867

RESUMO

BACKGROUND: Ischemic stroke is one of the main causes of death and disability in the world. The treatment for ischemic stroke is to restore blood perfusion as soon as possible. However, when ischemic brain tissue is re-perfused by blood, the mitochondrial permeability transition pore (mPTP) in neuron and microglia is excessively opened, resulting in the apoptosis of neuron and nerve inflammation. This aggravates nerve injury. Cyclosporine A (CsA) inhibits the over-opening of mPTP, subsequently reducing the release of ROS and the apoptosis of cerebral ischemia/reperfusion injured neuron and microglia. However, CsA is insoluble in water and present in high concentrations in lymphatic tissue. Herein, cerebral infarction tissue targeted nanoparticle (CsA@HFn) was developed to treat cerebral ischemia/reperfusion injury. RESULTS: CsA@HFn efficiently penetrated the blood-brain barrier (BBB) and selectively accumulated in ischemic area, inhibiting the opening of mPTP and ROS production in neuron. This subsequently reduced the apoptosis of neuron and the damage of BBB. Consequently, CsA@HFn significantly reduced the infarct area. Moreover, CsA@HFn inhibited the recruitment of astrocytes and microglia in ischemic region and polarized microglia into M2 type microglia, which subsequently alleviated the nerve inflammation. CONCLUSIONS: CsA@HFn showed a significant therapeutic effect on cerebral ischemia/reperfusion injury by alleviating the apoptosis of neuron, nerve inflammation and the damage of BBB in ischemic area. CsA@HFn has great potential in the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Traumatismo por Reperfusão , Animais , Camundongos , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Ciclosporina/farmacologia , Inflamação/tratamento farmacológico , Isquemia/tratamento farmacológico , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico
4.
J Nanobiotechnology ; 20(1): 161, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35351131

RESUMO

BACKGROUND: Clinical studies have shown that the efficacy of programmed cell death receptor-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors on glioblastoma (GBM) is much lower than what is expected because of the low immunogenicity of GBM. Ferroptosis of cancer cells can induce the maturation of dendritic cells (DC cells) and increase the activity of T cell. The activated T cells release IFN-γ, which subsequently induces the ferroptosis of cancer cells. Thus, the aim of this paper is to set up a new GBM-targeted drug delivery system (Fe3O4-siPD-L1@M-BV2) to boost ferroptosis for immunotherapy of drug-resistant GBM. RESULTS: Fe3O4-siPD-L1@M-BV2 significantly increased the accumulation of siPD-L1 and Fe2+ in orthotopic drug-resistant GBM tissue in mice. Fe3O4-siPD-L1@M-BV2 markedly decreased the protein expression of PD-L1 and increased the ratio between effector T cells and regulatory T cells in orthotopic drug-resistant GBM tissue. Moreover, Fe3O4-siPD-L1@M-BV2 induced ferroptosis of GBM cells and maturation of DC cell, and it also increased the ratio between M1-type microglia and M2-type microglia in orthotopic drug-resistant GBM tissue. Finally, the growth of orthotopic drug-resistant GBM in mice was significantly inhibited by Fe3O4-siPD-L1@M-BV2. CONCLUSION: The mutual cascade amplification effect between ferroptosis and immune reactivation induced by Fe3O4-siPD-L1@M-BV2 significantly inhibited the growth of orthotopic drug-resistant GBM and prolonged the survival time of orthotopic drug-resistant GBM mice.


Assuntos
Ferroptose , Glioblastoma , Animais , Biomimética , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Imunoterapia , Camundongos , Preparações Farmacêuticas
5.
J Nanobiotechnology ; 19(1): 367, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789268

RESUMO

BACKGROUND: Colon cancer is a most common malignant cancer in digestive system, and it is prone to develop resistance to the commonly used chemotherapy drugs, leading to local recurrence and metastasis. Paris saponin VII (PSVII) could not only inhibit the proliferation of colon cancer cells but also effectively induce apoptosis of drug-resistant colon cancer cells and reduce the metastasis of drug-resistant colon cancer cells as well. However, PSVII was insoluble in water and fat. It displayed no selective distribution in body and could cause severe hemolysis. Herein, colon cancer targeting calcium phosphate nanoparticles were developed to carry PSVII to treat drug-resistant colon cancer. RESULTS: PSVII carboxymethyl-ß-cyclodextrin inclusion compound was successfully encapsulated in colon cancer targeting calcium phosphate nanoparticles (PSVII@MCP-CaP) by using modified citrus pectin as stabilizer agent and colon cancer cell targeting moiety. PSVII@MCP-CaP significantly reduced the hemolysis of PSVII. Moreover, by specific accumulating in orthotopic drug-resistant colon cancer tissue, PSVII@MCP-CaP markedly inhibited the growth of orthotopic drug-resistant colon cancer in nude mice. PSVII@MCP-CaP promoted the apoptosis of drug-resistant colon cancer cells through mitochondria-mediated apoptosis pathway. Moreover, PSVII@MCP-CaP significantly inhibited the invasion and migration of drug-resistant colon cancer cells by increasing E-cadherin protein expression and reducing N-cadherin and MMP-9 protein expression. CONCLUSION: PSVII@MCP-CaP has great potential in the treatment of drug-resistant colon cancer. This study also explores a new method to prepare active targeting calcium phosphate nanoparticles loaded with a fat and water insoluble compound in water.


Assuntos
Antineoplásicos , Neoplasias do Colo/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas/química , Nanopartículas/química , Pectinas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fosfatos de Cálcio/química , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Camundongos Nus , Saponinas/química , Saponinas/farmacologia
6.
J Nanobiotechnology ; 17(1): 18, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683110

RESUMO

BACKGROUND: Cyclosporin A (CsA) is a promising therapeutic drug for myocardial ischemia reperfusion injury (MI/RI) because of its definite inhibition to the opening of mitochondrial permeability transition pore (mPTP). However, the application of cyclosporin A to treat MI/RI is limited due to its immunosuppressive effect to other normal organ and tissues. SS31 represents a novel mitochondria-targeted peptide which can guide drug to accumulate into mitochondria. In this paper, mitochondria-targeted nanoparticles (CsA@PLGA-PEG-SS31) were prepared to precisely deliver cyclosporin A into mitochondria of ischemic cardiomyocytes to treat MI/RI. RESULTS: CsA@PLGA-PEG-SS31 was prepared by nanoprecipitation. CsA@PLGA-PEG-SS31 showed small particle size (~ 50 nm) and positive charge due to the modification of SS31 on the surface of nanoparticles. CsA@PLGA-PEG-SS31 was stable for more than 30 days and displayed a biphasic drug release pattern. The in vitro results showed that the intracellular uptake of CsA@PLGA-PEG-SS31 was significantly enhanced in hypoxia reoxygenation (H/R) injured H9c2 cells. CsA@PLGA-PEG-SS31 delivered CsA into mitochondria of H/R injured H9c2 cells and subsequently increased the viability of H/R injured H9c2 cell through inhibiting the opening of mPTP and production of reactive oxygen species. In vivo results showed that CsA@PLGA-PEG-SS31 accumulated in ischemic myocardium of MI/RI rat heart. Apoptosis of cardiomyocyte was alleviated in MI/RI rats treated with CsA@PLGA-PEG-SS31, which resulted in the myocardial salvage and improvement of cardiac function. Besides, CsA@PLGA-PEG-SS31 protected myocardium from damage by reducing the recruitment of inflammatory cells and maintaining the integrity of mitochondrial function in MI/RI rats. CONCLUSION: CsA@PLGA-PEG-SS31 exhibited significant cardioprotective effects against MI/RI in rats hearts through protecting mitochondrial integrity, decreasing apoptosis of cardiomyocytes and myocardial infract area. Thus, CsA@PLGA-PEG-SS31 offered a promising therapeutic method for patients with acute myocardial infarction.


Assuntos
Ciclosporina/administração & dosagem , Ciclosporina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Oligopeptídeos/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ciclosporina/farmacocinética , Ciclosporina/farmacologia , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tamanho da Partícula , Ratos
7.
Nanomedicine ; 21: 102054, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310809

RESUMO

Bone is one of the prone metastatic sites of lung cancer. Osteoclast plays an important role in bone resorption and the growth of bone metastases of lung cancer. In order to treat bone metastases of lung cancer, we reported a docetaxel (DTX)-loaded nanoparticle, DTX@AHP, which could target dually at osteoclasts and bone metastatic tumor cells. The in vitro drug release from DTX@AHP exhibited pH and redox responsive characteristics. DTX@AHP displayed high binding affinity with bone matrix. In addition, DTX@AHP significantly inhibited the differentiation of RAW264.7 into osteoclast and effectively inhibited the proliferation of osteoclasts and tumor cells in in-vitro 3D bone metastases model of lung cancer. DTX@AHP could accumulate in bone metastases sites in vivo. Consequently, DTX@AHP not only markedly inhibited the growth of bone metastases of lung cancer but also reduced osteolysis in tumor-bearing mice. DTX@AHP exhibited great potential in the treatment of bone metastases of lung cancer.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Docetaxel/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Proliferação de Células/efeitos dos fármacos , Docetaxel/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Nanopartículas/química , Metástase Neoplásica , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteólise/induzido quimicamente , Células RAW 264.7
8.
Nanomedicine ; 16: 236-249, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30639669

RESUMO

Efficient delivery of antioxidant drugs into mitochondria of ischemic cardiomyocytes where reactive oxygen species largely induced is a major challenge for precise treatment of myocardial ischemia-reperfusion injury. Herein, we report a smart dual-shell polymeric nanoparticle, MCTD-NPs, which utilizes multistage continuous targeted strategy to deliver reactive oxygen species scavenger specifically to mitochondria of ischemic cardiomyocytes upon systemic administration. In vitro experiments indicated that the intracellular uptake of MCTD-NPs was specifically enhanced in hypoxia reoxygenation injured H9c2 cells. MCTD-NPs selectively delivered resveratrol to mitochondria of hypoxia reoxygenation injured H9c2 cells. In addition, MCTD-NPs increased the viability of H/R injured H9c2 cell through eliminating mitochondrial ROS, decreasing mPTP opening and blocking mitochondria-dependent apoptotic pathway. In vivo experiments revealed that MCTD-NPs increased the distribution of resveratrol in the ischemic myocardium and subsequently reduced infarct size in MI/RI rats. These results demonstrated a novel platform for specific delivery of antioxidant to mitochondria to treat MI/RI.


Assuntos
Antioxidantes/uso terapêutico , Mitocôndrias/metabolismo , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Humanos , Marcação In Situ das Extremidades Cortadas , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Mol Pharm ; 15(3): 1296-1308, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29432025

RESUMO

The experiment aims to increase antitumor activity while decreasing the systemic toxicity of doxorubicin (DOX). Charge reversible and mitochondria/nucleus dual target lipid hybrid nanoparticles (LNPs) was prepared. The in vitro experimental results indicated that LNPs released more amount of DOX in acidic environment and delivered more amount of DOX to the mitochondria and nucleus of tumor cells than did free DOX, which resulted in the reduction of mitochondrial membrane potential and the enhancement of cytotoxicity of LNPs on tumor cells. Furthermore, the in vivo experimental results indicated that LNPs delivered more DOX to tumor tissue and significantly prolonged the retention time of DOX in tumor tissue as compared with free DOX, which consequently resulted in the high antitumor activity and low systemic toxicity of LNPs on tumor-bearing nude mice. The above results indicated that charge reversible mitochondria/nucleus dual targeted lipid hybrid nanoparticles greatly enhanced therapeutic efficacy of DOX for treating lung cancer.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Núcleo Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/química , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nanomedicine ; 14(3): 991-1003, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339188

RESUMO

In order to enhance the penetration of small interference RNA against the polo-like kinase I (siPLK1) across BBB to treat glioblastoma (GBM), transferrin (Tf) modified magnetic nanoparticle (Tf-PEG-PLL/MNP@siPLK1) was prepared. The in vitro experiments indicated that Tf-PEG-PLL/MNP@siPLK1 enhanced the cellular uptake of siPLK1, which resulted in an increase of gene silencing effect and cytotoxicity of Tf-PEG-PLL/MNP@siPLK1 on U87 cells. Besides, Tf-PEG-PLL/MNP@siPLK1 significantly inhibited the growth of U87 glioblastoma spheroids and markedly increased the BBB penetration efficiency of siPLK1 with the application of external magnetic field in in-vitro BBB model. The in vivo experiments indicated that siPLK1 selectively accumulated in the brain tissue, and markedly reduced tumor volume and prolonged the survival time of GBM-bearing mice after Tf-PEG-PLL/MNP@siPLK1 was injected to GBM-bearing mice via tail vein. The above data indicated that magnet and transferrin co-modified nanoparticle enhanced siPLK1 penetration across BBB and increased its anti GBM activity in vivo.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Inativação Gênica , Glioblastoma/terapia , Nanopartículas de Magnetita/administração & dosagem , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/genética , Transferrina/química , Animais , Barreira Hematoencefálica/patologia , Ciclo Celular , Proteínas de Ciclo Celular/administração & dosagem , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Endocitose , Glioblastoma/genética , Glioblastoma/patologia , Nanopartículas de Magnetita/química , Camundongos , Tamanho da Partícula , Proteínas Serina-Treonina Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/administração & dosagem , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
11.
Mol Pharm ; 14(3): 746-756, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28146635

RESUMO

Doxorubicin (DOX) is a broad-spectrum chemotherapy drug to treat tumors. However, severe side effects and development of DOX resistance hinder its clinical application. In order to overcome DOX resistance, DOX/TPP-DOX@Pasp-hyd-PEG-FA micelles were prepared by using newly synthesized comb-like amphiphilic material Pasp-hyd-PEG-FA. Drug released in vitro from micelles showed a pH-dependent manner. DOX/TPP-DOX@Pasp-hyd-PEG-FA induced more apoptosis in KB cell and MCF-7/ADR cell than DOX@Pasp-hyd-PEG-FA. Confocal laser scanning microscopy experiment indicated that DOX/TPP-DOX@Pasp-hyd-PEG-FA delivered TPP-DOX and DOX to the nucleus and mitochondria of the tumor cell simultaneously. Thus, DOX/TPP-DOX@Pasp-hyd-PEG-FA could significantly damage the mitochondrial membrane potential. DOX/TPP-DOX@Pasp-hyd-PEG-FA markedly shrinked the tumor volume in tumor-bearing nude mice grafted with MCF-7/ADR cell as compared with the same dose of free DOX. DOX was mainly accumulated in tumor tissue after DOX/TPP-DOX@Pasp-hyd-PEG-FA was injected to tumor-bearing nude mice by tail vein. After free DOX was injected to tumor-bearing nude mice by tail vein, DOX widely distributed through the whole body. Therefore, mitochondria and nucleus dual delivery system has potential in overcoming DOX resistance.


Assuntos
Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Ácido Fólico/química , Humanos , Concentração de Íons de Hidrogênio , Células KB , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Micelas , Polietilenoglicóis/química
12.
AAPS PharmSciTech ; 17(2): 409-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26195071

RESUMO

Lipo-PGE1 is the most widely used formulation of PGE1 in clinic. However, PGE1 is easier to leak out from lipo-PGE1 and this will lead to the phlebophlogosis when intravenous injection. The stability of lipo-PGE1 in storage and in vivo is also discounted. The aim of this study is to develop a long-circulating prostaglandin E1-loaded nanoemulsion modified with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) to improve the stability and pharmacokinetics profiles of lipo-PGE1. PEGylated PGE1 nanoemulsion was prepared using a dispersing-homogenized method. The stability of nanoemulsion in 1 month was investigated. Pharmacokinetic studies were employed to evaluate the in vivo profile of the optimized nanoemulsion. The optimized nanoemulsion PGE1-PEG2000(1%)-NE showed an oil droplet size <100 nm with a surface charge of -14 mV. Approximately, 97% of the PGE1 was encapsulated in the nanoemulsion. The particle size, zeta potential, and drug loading of PGE1-PEG2000(1%)-NE were stable in 1 month. After PGE1-PEG2000(1%)-NE was intravenously administered to rats, the area under curve (AUC) and half-life of PGE1 were, respectively, 1.47-fold and 5.98-fold higher than those of lipo-PGE1 (commercial formulation). PGE1-PEG2000(1%)-NE was an ideal formulation for prolonging the elimination time of PGE1. This novel parenteral colloidal delivery system of PGE1 has a promising potential in clinic use.


Assuntos
Alprostadil/química , Emulsões/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Química Farmacêutica/métodos , Excipientes/química , Meia-Vida , Masculino , Tamanho da Partícula , Fosfatidiletanolaminas/química , Ratos , Ratos Sprague-Dawley
13.
Mol Pharm ; 11(5): 1378-90, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24720787

RESUMO

Doxorubicin (DOX) is a broad-spectrum antitumor drug used in the clinic. However, it can cause serious heart toxicity. To increase the therapeutic index of DOX and to attenuate its toxicity toward normal tissues, we conjugated DOX with either α-linolenic acid (LNA) or palmitic acid (PA) by a hydrazone or an amide bond to produce DOX-hyd-LNA, DOX-ami-LNA, DOX-hyd-PA, and DOX-ami-PA. The cytotoxicity of DOX-hyd-LNA on HepG2, MCF-7, and MDA-231 cells was higher compared to that of DOX, DOX-ami-LNA, DOX-hyd-PA, and DOX-ami-PA. The cytotoxicity of DOX-hyd-LNA on HUVECs was lower than that of DOX. DOX-hyd-LNA released significantly more DOX in pH 5.0 medium than it did in pH 7.4 medium. DOX-hyd-LNA induced more apoptosis in MCF-7 and HepG2 cells than DOX or DOX-ami-LNA. Significantly more DOX was released from DOX-hyd-LNA in both MCF-7 and HepG2 cells compared with DOX-ami-LNA. Compared to free DOX, a biodistribution study showed that DOX-hyd-LNA greatly increased the content of DOX in tumor tissue and decreased the content of DOX in heart tissue after it was intravenously administered. DOX-hyd-LNA improved the survival rate, prolonged the life span, and slowed the growth of the tumor in tumor-bearing nude mice. These results indicate that DOX-hyd-LNA improved the therapeutic index of DOX. Therefore, DOX-hyd-LNA is a potential compound for use as a cancer-targeting therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Ácido alfa-Linolênico/química , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células Hep G2 , Humanos , Hidrazonas/química , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Nus , Ácido Palmítico/química , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Anticancer Drugs ; 25(7): 751-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24590167

RESUMO

The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Ácido Fólico/análogos & derivados , Nanopartículas/química , Fosfatidilcolinas/química , Polietilenoglicóis/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Nanopartículas/metabolismo , Fosfatidilcolinas/metabolismo , Polietilenoglicóis/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
15.
Redox Biol ; 63: 102734, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37159984

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and its early onset is closely related to mitochondrial energy metabolism. The brain is only 2% of body weight, but consumes 20% of total energy needs. Mitochondria are responsible for providing energy in cells, and maintaining their homeostasis ensures an adequate supply of energy to the brain. Mitochondrial homeostasis is constituted by mitochondrial quantity and quality control, which is dynamically regulated by mitochondrial energy metabolism, mitochondrial dynamics and mitochondrial quality control. Impaired energy metabolism of brain cells occurs early in AD, and maintaining mitochondrial homeostasis is a promising therapeutic target in the future. We summarized the mechanism of mitochondrial homeostasis in AD, its influence on the pathogenesis of early AD, strategies for maintaining mitochondrial homeostasis, and mitochondrial targeting strategies. This review concludes with the authors' opinions on future research and development for mitochondrial homeostasis of early AD.


Assuntos
Doença de Alzheimer , Estresse Oxidativo , Humanos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Homeostase
16.
Acta Biomater ; 160: 265-280, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822483

RESUMO

Myocardial ischemia-reperfusion injury (MI/RI) seriously restricts the therapeutic effect of reperfusion. It is demonstrated that ferroptosis and apoptosis of cardiomyocytes are widely involved in MI/RI. Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Besides, transferrin receptor 1 (TfR1) is highly expressed in ischemic myocardium, and apoferritin (ApoFn) is a ligand of the transferrin receptor. In this study, CsA@ApoFn was prepared by wrapping cyclosporin A (CsA) with ApoFn and actively accumulated in ischemic cardiomyocytes through TfR1 mediated endoctosis in MI/RI mice. After entering cardiomyocytes, ApoFn in CsA@ApoFn inhibited ferroptosis of ischemic cardiomyocytes by increasing the protein expression of GPX4 and reducing the content of labile iron pool and lipid peroxides. At the same time, CsA in CsA@ApoFn attenuated the apoptosis of ischemic cardiomyocytes through recovering mitochondrial membrane potential and reducing the level of reactive oxygen species, which played a synergistic role with ApoFn in the treatment of MI/RI. In conclusion, CsA@ApoFn restored cardiac function of MI/RI mice by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. ApoFn itself not only served as a safe carrier to specifically deliver CsA to ischemic cardiomyocytes but also played a therapeutic role on MI/RI. CsA@ApoFn is proved as an effective drug delivery platform for the treatment of MI/RI. STATEMENT OF SIGNIFICANCE: Recent studies have shown that ferroptosis is an important mechanism of myocardial ischemia-reperfusion injury (MI/RI). Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Apoferritin, as a delivery carrier, can actively target to ischemic myocardium through binding with highly expressed transferrin receptor on ischemic cardiomyocytes. At the same time, apoferritin plays a protective role on ischemic cardiomyocytes by inhibiting ferroptosis. This strategy of killing two birds with one stone significantly improves the therapeutic effect on MI/RI while does not need more pharmaceutical excipients, which has the prospect of clinical transformation.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ciclosporina/farmacologia , Ciclosporina/química , Ciclosporina/metabolismo , Apoferritinas/farmacologia , Apoferritinas/metabolismo , Apoferritinas/uso terapêutico , Apoptose
17.
Acta Biomater ; 166: 640-654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236576

RESUMO

Triple negative breast cancer (TNBC) is prone to develop drug resistance and metastasis. Bone is the most common distant metastasis site of breast cancer cell. Patients with bone metastasis from TNBC suffer from unbearable pain due to the growth of bone metastasis and bone destruction. Simultaneously blocking the growth of bone metastasis and reprogramming the microenvironment of bone resorption and immunosuppression is a promising strategy to treat bone metastasis from TNBC. Herein, we prepared a pH and redox responsive drug delivery system, named DZ@CPH, by encapsulating docetaxel (DTX) with hyaluronic acid-polylactic acid micelle then reinforcing with calcium phosphate and zoledronate for targeting to bone metastasis from TNBC. DZ@CPH reduced the activation of osteoclast and inhibited bone resorption by decreasing the expression of nuclear factor κB receptor ligand and increasing the expression of osteoprotegerin in drug-resistant bone metastasis tissue. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the apoptosis-related and invasion-related protein expression. It also increased the sensitivity of orthotopic drug-resistant bone metastasis to DTX by inhibiting the expression of P-glycoprotein, Bcl-2 and transforming growth factor-ß in tissue of drug-resistant bone metastasis. Moreover, the ratio between M1 type macrophage to M2 type macrophage in bone metastasis tissue was increased by DZ@CPH. In a word, DZ@CPH blocked the growth of bone metastasis from drug-resistant TNBC through inducing the apoptosis of drug-resistant TNBC cells and reprogramming the microenvironment of bone resorption and immunosuppression. DZ@CPH has a great potential in clinical application for the treatment of bone metastasis from drug-resistant TNBC. STATEMENT OF SIGNIFICANCE: Triple negative breast cancer (TNBC) is prone to develop bone metastasis. Now bone metastasis is still an intractable disease. In this study, docetaxel and zoledronate co-loaded calcium phosphate hybrid micelles (DZ@CPH) were prepared. DZ@CPH reduced the activation of osteoclasts and inhibited bone resorption. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the expression of apoptosis and invasion related protein in bone metastasis tissue. Moreover, the ratio between M1 type macrophages to M2 type macrophages in bone metastases tissue was increased by DZ@CPH. In a word, DZ@CPH blocked vicious cycle between the growth of bone metastasis and bone resorption, which greatly improved the therapeutic effect on bone metastasis from drug-resistant TNBC.


Assuntos
Doenças da Medula Óssea , Neoplasias Ósseas , Osteólise , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel , Micelas , Neoplasias de Mama Triplo Negativas/patologia , Ácido Zoledrônico , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Terapia de Imunossupressão , Fosfatos de Cálcio/uso terapêutico , Microambiente Tumoral
18.
ACS Nano ; 16(5): 7409-7427, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549164

RESUMO

Glioblastoma (GBM) is an invasive cancer with high mortality in central nervous system. Resistance to temozolomide (TMZ) and immunosuppressive microenvironment lead to low outcome of the standardized treatment for GBM. In this study, a 2-deoxy-d-glucose modified lipid polymer nanoparticle loaded with TMZ and siPD-L1 (TMZ/siPD-L1@GLPN/dsb) was prepared to reprogram the TMZ-resistant and immunosuppressive microenvironment in orthotopic GBM. TMZ/siPD-L1@GLPN/dsb simultaneously delivered a large amount of TMZ and siPD-L1 to the deep area of the orthotopic TMZ-resistant GBM tissue. By inhibiting PD-L1 protein expression, TMZ/siPD-L1@GLPN/dsb markedly augmented the percentage of CD3+CD8+IFN-γ+ cells (Teff cells) and reduced the percentage of CD4+CD25+FoxP3+ cells (Treg cells) in orthotopic TMZ-resistant GBM tissue, which enhanced T-cell mediated cytotoxicity on orthotopic TMZ-resistant GBM. Moreover, TMZ/siPD-L1@GLPN/dsb obviously augmented the sensitivity of orthotopic TMZ-resistant GBM to TMZ through decreasing the protein expression of O6-methyl-guanine-DNA methyltransferase (MGMT) in TMZ-resistant GBM cells. Thus, TMZ/siPD-L1@GLPN/dsb markedly restrained the growth of orthotopic TMZ-resistant GBM and extended the survival time of orthotopic GBM rats through reversing a TMZ-resistant and immunosuppressive microenvironment. TMZ/siPD-L1@GLPN/dsb shows potential application to treat orthotopic TMZ-resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Ratos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Fármacos por Nanopartículas
19.
J Control Release ; 336: 54-70, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129862

RESUMO

Currently, clinical treatment for temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) is still a difficult problem. The aim of this paper is to set up a new GBM-targeted drug delivery system to treat TMZ-resistant GBM. Zoledronate (ZOL) not only induces apoptosis of TMZ-resistant GBM cells by down-regulation of farnesyl pyrophosphate synthetase (FPPS) but also increases the proportion of M1-type GBM associated macrophages (GAM). Based on chemoattractants secreted by GBM cells, a ZOL loaded nanoparticle coated with microglia cell membrane (ZOL@CNPs) was prepared to deliver ZOL to central nervous system to treat TMZ-resistant GBM. ZOL@CNPs was actively recruited to TMZ-resistant GBM region by CX3CL1/CX3CR1 and CSF-1/CSF-1R signal axis, and the release of ZOL from ZOL@CNPs was triggered by glutathione in GBM cells. ZOL@CNPs inhibited the growth of TMZ-resistant GBM through inducing apoptosis and inhibiting the migration and invasion of TMZ-resistant GBM cells. Besides, the immunosuppressive and hypoxic microenvironment, playing an important role in the growth of TMZ-resistant GBM, was significantly improved by ZOL@CNPs through increasing the proportion of M1-type GAM and blocking the expression of HIF-1α. ZOL@CNPs has a great potential application in the treatment for TMZ-resistant GBM.


Assuntos
Glioblastoma , Nanopartículas , Antineoplásicos Alquilantes/uso terapêutico , Biomimética , Linhagem Celular Tumoral , Fatores Quimiotáticos/farmacologia , Fatores Quimiotáticos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Humanos , Microglia , Temozolomida/uso terapêutico , Microambiente Tumoral
20.
J Pharm Sci ; 110(2): 876-887, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166581

RESUMO

Prostate cancer is the most common malignant tumor with bone metastasis, and there is still no ideal treatment for bone metastasis of prostate cancer. In this study, a pH and GSH dual sensitive calcium phosphate-polymer hybrid nanoparticle (DTX@Cap/HP) was prepared to co-deliver zoledronate (ZOL) and docetaxel (DTX) to treat bone metastasis of prostate cancer. DTX@Cap/HP exhibited high bone binding affinity and released more DTX and ZOL in acidic and high GSH concentration environment. A large amount of DTX@Cap/HP was uptaken by PC-3 cell in acidic medium than that in neutral medium. DTX@Cap/HP obviously reduced PC-3 cell proliferation and bone lesion in in-vitro 3D model of bone metastases of prostate cancer. Besides, DTX@Cap/HP also exhibited stronger anti bone metastases of prostate cancer activity in vivo as compared with the same dose of DTX + ZOL, which resulted from the co-delivery of DTX and ZOL to bone metastases of prostate cancer by DTX@Cap/HP and the synergistic effects of DTX and ZOL. DTX@Cap/HP has great potential in the treatment of bone metastases of prostate cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias da Próstata , Antineoplásicos/uso terapêutico , Fosfatos de Cálcio , Linhagem Celular Tumoral , Docetaxel , Humanos , Masculino , Polímeros , Neoplasias da Próstata/tratamento farmacológico , Ácido Zoledrônico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA