Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442791

RESUMO

BACKGROUND: The global increase in the aging population has led to a higher incidence of osteoporosis among the elderly. OBJECTIVE: This study aimed to evaluate the protective properties of pinoresinol diglucoside (PDG), an active constituent of Eucommia ulmoides, against dexamethasone-induced osteoporosis and chondrodysplasia. METHODS: A zebrafish model of osteoporosis was established by exposing larval zebrafish to dexamethasone. The impact of PDG on bone mineralization was assessed through alizarin red and calcein staining. Alkaline phosphatase activity was quantified to evaluate osteoblast function. The influence of PDG on chondrogenesis was estimated using alcian blue staining. Fluorescence imaging and motor behavior analysis were employed to assess the protective effect of PDG on the structure and function of dexamethasone-induced skeletal teratogenesis. qPCR determined the expression of osteogenesis and Wnt signaling-related genes. Molecular docking was used to assess the potential interactions between PDG and Wnt receptors. RESULTS: PDG significantly increased bone mineralization and corrected spinal curvature and cartilage malformations in the zebrafish model. Furthermore, PDG enhanced swimming abilities compared to the model group. PDG mitigated dexamethasone-induced skeletal abnormalities in zebrafish by upregulating Wnt signaling, showing potential interaction with Wnt receptors FZD2 and FZD5. CONCLUSION: PDG mitigates dexamethasone-induced osteoporosis and chondrodysplasia by promoting bone formation and activating Wnt signaling.


Assuntos
Lignanas , Osteoporose , Peixe-Zebra , Humanos , Animais , Idoso , Simulação de Acoplamento Molecular , Osteogênese , Dexametasona/farmacologia , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Receptores Wnt , Diferenciação Celular
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376206

RESUMO

Planarian flatworms regenerate their heads and tails from anterior or posterior wounds and this regenerative blastema polarity is controlled by Wnt/ß-catenin signaling. It is well known that a regeneration blastema of appendages of vertebrates such as fish and amphibians grows distally. However, it remains unclear whether a regeneration blastema in vertebrate appendages can grow proximally. Here, we show that a regeneration blastema in zebrafish fins can grow proximally along the proximodistal axis by calcineurin inhibition. We used fin excavation in adult zebrafish to observe unidirectional regeneration from the anterior cut edge (ACE) to the posterior cut edge (PCE) of the cavity and this unidirectional regeneration polarity occurs as the PCE fails to build blastemas. Furthermore, we found that calcineurin activities in the ACE were greater than in the PCE. Calcineurin inhibition induced PCE blastemas, and calcineurin hyperactivation suppressed fin regeneration. Collectively, these findings identify calcineurin as a molecular switch to specify the PCE blastema of the proximodistal axis and regeneration polarity in zebrafish fin.


Assuntos
Nadadeiras de Animais/fisiologia , Calcineurina/metabolismo , Regeneração/fisiologia , Animais , Polaridade Celular/fisiologia , Extremidades/fisiologia , Transdução de Sinais , Cicatrização/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
3.
Ecotoxicol Environ Saf ; 270: 115911, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181604

RESUMO

Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Doença Hepática Induzida por Substâncias e Drogas , Hidantoínas , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Embrião não Mamífero/metabolismo , Apoptose
4.
Fish Physiol Biochem ; 50(2): 403-412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085449

RESUMO

BPA is so ubiquitous that 27 million tons of BPA-containing plastic, including mineral water bottles and baby bottles, is produced worldwide each year. The potential toxicity of BPA to humans and aquatic organisms has been the subject of intense research. In this study, a zebrafish model system was used to assess BPA-mediated hepatotoxicity. Zebrafish larvae at 72-144 hpf were exposed to BPA at different concentrations (0,1, 3 and 5mg/L). For example, BPA-treated zebrafish larvae showed increased mortality, delayed uptake of nutrients in yolk sac, shortened body length, smaller liver area, abnormal expression of genes related to liver development, and pathological changes in the liver tissue. Mechanistically, BPA exposure induced excessive oxidative stress in the liver of zebrafish and increased the level of hepatocyte apoptosis in zebrafish larvae, and the antioxidant astaxanthin could rescue the BPA-mediated liver toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Químicos da Água , Humanos , Animais , Peixe-Zebra/genética , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Larva , Apoptose
5.
Fish Shellfish Immunol ; 139: 108898, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301310

RESUMO

Sanguinarine (C20H14NO4+), a plant alkaloid and pesticide, works well a fungicidal and insecticidal applications. The prospect that sanguinarine may have potentially toxic effects on aquatic organisms has been brought to light by its use in agriculture. The first evaluation of the immunotoxic and behavioral effects of sanguinarine exposure on larval zebrafish was done in this work. Firstly, zebrafish embryos exposed to sanguinarine had shorter body length, larger yolk sacs, and slower heart rates. Secondly, the number of innate immune cells was significantly reduced. Thirdly, alterations in locomotor behavior were observed as exposure concentrations increased. Total distance travelled, travel time, and mean speed were all reduced. We also found significant changes in oxidative stress-related indicators and a significant increase in apoptosis in the embryos. Further studies revealed aberrant expression of some key genes in the TLR immune signaling pathway including CXCL-c1c, IL8, MYD88, and TLR4. At the same time, the expression of the pro-inflammatory cytokine IFN-γ was upregulated. To sum up, our results suggest that sanguinarine exposure may cause immunotoxicity and aberrant behavior in larval zebrafish.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Inseticidas/toxicidade , Estresse Oxidativo , Benzofenantridinas/toxicidade , Benzofenantridinas/metabolismo , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
6.
Fish Shellfish Immunol ; 138: 108849, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268155

RESUMO

Pexidartinib, a macrophage colony-stimulating factor receptor (CSF-1R) inhibitor, is indicated for the treatment of tendon sheath giant cell tumor (TGCT). However, few studies on the toxicity mechanisms of pexidartinib for embryonic development. In this study, the effects of pexidartinib on embryonic development and immunotoxicity in zebrafish were investigated. Zebrafish embryos at 6 h post fertilization (6 hpf) were exposed to 0, 0.5, 1.0, and 1.5 µM concentrations of pexidartinib, respectively. The results showed that different concentrations of pexidartinib induced the shorter body, decreased heart rate, reduced number of immune cells and increase of apoptotic cells. In addition, we also detected the expression of Wnt signaling pathway and inflammation-related genes, and found that these genes expression were significantly upregulated after pexidartinib treatment. To test the effects of embryonic development and immunotoxicity due to hyperactivation of Wnt signaling after pexidartinib treatment, we used IWR-1, Wnt inhibitor, for rescue. Results show that IWR-1 could not only rescue developmental defects and immune cell number, but also downregulate the high expression of Wnt signaling pathway and inflammation-related caused by pexidartinib. Collectively, our results suggest that pexidartinib induces the developmental toxicity and immunotoxicity in zebrafish embryos through hyperactivation of Wnt signaling, providing a certain reference for the new mechanisms of pexidartinib function.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Animais , Peixe-Zebra/genética , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Inflamação/metabolismo , Embrião não Mamífero
7.
J Appl Toxicol ; 43(7): 1073-1082, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36755374

RESUMO

Roxadustat is a novel and effective small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PHI). However, little research has been done on its toxicity to vertebrate embryonic development. In this study, we used zebrafish to assess the effects of roxadustat on early embryonic development. Exposure to 14, 28, and 56 µM roxadustat resulted in abnormal embryonic development in zebrafish embryos, such as shortened body length and early liver developmental deficiency. Roxadustat exposure resulted in liver metabolic imbalance and abnormal liver tissue structure in adult zebrafish. In addition, roxadustat could up-regulate oxidative stress, and astaxanthin (AS) could partially rescue liver developmental defects by down-regulation of oxidative stress. After exposure to roxadustat, the Notch signaling is down-regulated, and the use of an activator of Notch signaling can partially rescue hepatotoxicity. Therefore, our research indicates that roxadustat may induce zebrafish hepatotoxicity by down-regulating Notch signaling. This study provides a reference for the clinical use of roxadustat.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/etiologia
8.
Environ Toxicol ; 38(11): 2679-2690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37551640

RESUMO

Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, has shown potent anticancer activity in various clinical cancer treatments, but also different adverse reactions. Therefore, it is necessary to study its potential toxicity and working mechanism. We used zebrafish to investigate the effects of apatinib on the development of embryos. Zebrafish exposed to 2.5, 5, and 10 µM apatinib showed adverse effects such as decreased liver area, pericardial oedema, slow yolk absorption, bladder atrophy, and body length shortening. At the same time, it leads to abnormal liver tissue structure, liver function and related gene expression. Furthermore, after exposure to apatinib, oxidative stress levels were significantly elevated but liver developmental toxicity was effectively ameliorated with oxidative stress inhibitor treatment. Apatinib induces down-regulation of key target genes of Wnt signaling pathway in zebrafish, and it is found that Wnt activator can significantly rescue liver developmental defects. These results suggest that apatinib may induce zebrafish hepatotoxicity by inhibiting the Wnt signaling pathway and up-regulating oxidative stress, helping to strengthen our understanding of rational clinical application of apatinib.

9.
Fish Shellfish Immunol ; 131: 119-126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36195270

RESUMO

Pyrazosulfuron-ethyl is one of the most widely used herbicides in agriculture and can be widely detected in aquatic ecosystems. However, its biosafety, including its potential toxic effects on aquatic organisms and its mechanism, is still poorly understood. As an ideal vertebrate model, zebrafish, the effect of pyrazosulfuron-ethyl on early embryonic development and immunotoxicity of zebrafish can be well evaluated. From 10 to 72 h post fertilization (hpf), zebrafish embryos were exposed to 1, 5, and 9 mg/L pyrazosulfuron-ethyl which led in a substantial reduction in survival, total length, and heart rate, as well as a range of behavioral impairments. In zebrafish larvae, the number of neutrophils and macrophages was considerably decreased and oxidative stress levels increased in a dose-dependent way after pyrazosulfuron-ethyl exposure. And the expression of immune-related genes, such as TLR-4, MyD88 and IL-1ß, were downregulated by pyrazosulfuron-ethyl exposure. Moreover, pyrazosulfuron-ethyl exposure also inhibited motor behavior. Notch signaling was upregulated after exposure to pyrazosulfuron-ethyl, while inhibition of Notch signaling pathway could rescue immunotoxicity. Therefore, our findings suggest that pyrazosulfuron-ethyl has the potential to induce immunotoxicity and neurobehavioral changes in zebrafish larvae.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/genética , Embrião não Mamífero , Ecossistema , Pirazóis/toxicidade , Estresse Oxidativo , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
10.
Ecotoxicol Environ Saf ; 241: 113752, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709675

RESUMO

Trifloxystrobin-tebuconazole (TFS-TBZ) is a novel, broad-spectrum fungicide that has been frequently detected in both the environment and agricultural products. However, its adverse effects on aquatic organisms remain unknown. In this study, the adverse effects of ecologically relevant TFS-TBZ concentrations (i.e., 75.0, 112.5, and 150.0 µg/L) on the heart and development of zebrafish were investigated. TFS-TBZ was found to substantially hinder development, inhibit growth, and cause significant abnormity at higher concentrations. Moreover, TFS-TBZ caused severe pericardial edema, heart loop failure, cardiac linearization, and ultra-slow heartbeat, implying that TFS-TBZ might induce congenital heart disease. TFS-TBZ inhibited Notch signaling and increased the intracellular generation of reactive oxygen species, resulting in decreased myocardial cell proliferation and increased apoptosis. The use of sodium valproate and Gadofullerene illustrated the relevance of the Notch signaling system and oxidative stress. Finally, TFS-TBZ exposure conveys severe developmental toxicity to the zebrafish heart. The underlying mechanism is regulation notch mediated-oxidative stress generation, implying that TFS-TBZ may be potentially hazardous to aquatic organisms in the environment.


Assuntos
Estresse Oxidativo , Peixe-Zebra , Acetatos , Animais , Embrião não Mamífero , Iminas , Estrobilurinas/toxicidade , Triazóis
11.
Environ Toxicol ; 37(6): 1310-1320, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119177

RESUMO

Due to an increasing number of abused drugs dumped into the wastewater, more and more drugs are detected in the water environment, which may affect the survival of aquatic organisms. Lenvatinib is a multi-targeted tyrosine kinase inhibitor, and is clinically used to treat differentiated thyroid cancer, renal epithelial cell carcinoma and liver cancer. However, there are few reports on the effects of lenvatinib in embryos development. In this study, zebrafish embryos were used to evaluate the effect of lenvatinib on cardiovascular development. Well-developed zebrafish embryos were selected at 6 h post fertilization (hpf) and exposed to 0.05 mg/L, 0.1 mg/L and 0.2 mg/L lenvatinib up to 72 hpf. The processed embryos demonstrated cardiac edema, decreased heart rate, prolonged SV-BA distance, inhibited angiogenesis, and blocked blood circulation. Lenvatinib caused cardiac defects in the whole stage of cardiac development and increased the apoptosis of cardiomyocyte. Oxidative stress in the processed embryos was accumulated and inhibiting oxidative stress could rescue cardiac defects induced by lenvatinib. Additionally, we found that lenvatinib downregulated Notch signaling, and the activation of Notch signaling could rescue cardiac developmental defects and downregulate oxidative stress level induced by lenvatinib. Our results suggested that lenvatinib might induce cardiac developmental toxicity through inducing Notch mediated-oxidative stress generation, raising concerns about the harm of exposure to lenvatinib in aquatic organisms.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero , Estresse Oxidativo , Compostos de Fenilureia/toxicidade , Quinolinas , Poluentes Químicos da Água/metabolismo
12.
Ecotoxicol Environ Saf ; 222: 112514, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280841

RESUMO

Pendimethalin (PND) is one of the best sellers of selective herbicide in the world and has been frequently detected in the water. However, little is known about its effects on cardiac development. In this study, we used zebrafish to investigate the developmental and cardiac toxicity of PND. We exposed the zebrafish embryos with a serial of concentrations at 3, 4, and 5 mg/L at 5.5-72 h post-fertilization (hpf). We found that PND exposure can reduce the heart rate, survival rate, and body length of zebrafish embryos. Furthermore, we identified many malformations including pericardial and yolk sac edema, spinal deformity, and cardiac looping abnormality. In addition, PND increased the expression of reactive oxygen species and malondialdehyde and reduced the activity of superoxide dismutase (Antioxidant enzymes); We examined the expression of cardiac development-related genes and the apoptosis markers, and found changes of the following marker: vmhc, nppa, tbx5a, nkx2.5, gata4, tbx2b and FoxO1, bax, bcl-2, p53, casp-9, casp-3. Our data showed that activation of Wnt pathway can rescue the cardiac abnormalities caused by PND. Our results provided new evidence for the toxicity of PND and suggested that the PND residual should be treated as a hazard in the environment.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Compostos de Anilina , Animais , Apoptose , Cardiotoxicidade/metabolismo , Embrião não Mamífero/metabolismo , Estresse Oxidativo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Ecotoxicol Environ Saf ; 201: 110725, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32474209

RESUMO

Lincomycin hydrochloride is one of the commonly used drugs in clinic. However, it has many side effects on patients, and its mechanism is still poorly understood. In this study, 6 h post-fertilization (6 hpf) zebrafish embryos were exposed to several concentrations of lincomycin hydrochloride (15, 30, 60 µg/mL) for up to 24 or 96 hpf to detect their developmental toxicity and neurotoxicity, and to 6 days post-fertilization (6 dpf) to detect their behavioral toxicity. Our results showed that lincomycin hydrochloride could lead to embryonic head deformities (unclear ventricles, smaller ventricles, fewer new neurons). The studies showed that the frequency of spontaneous tail flick of zebrafish embryo increased at 24 hpf, and the lincomycin hydrochloride exposed zebrafish embryos showed increased heart rate, shorter body length, and yolk sac edema with severe pericardial edema at 96 hpf. The studies also showed that lincomycin hydrochloride increased oxidative stress level, Acetylcholinesterase (AChE) activity, ATPase activity and apoptosis in zebrafish larvae. In addition, the swimming behavior of zebrafish larvae decreased with the increase of lincomycin hydrochloride concentration, but the angular velocity and meandering degree increased, which might be due to the decreased activity of AChE and ATPase, as well as the decreased expression of genes related to neurodevelopment and neurotransmitter system, leading to the change of their motor behaviors. In summary, we found that lincomycin hydrochloride induced developmental toxicity and neurotoxicity in zebrafish larvae, contributing to a more comprehensive evaluation of the safety of the drug.


Assuntos
Lincomicina/toxicidade , Síndromes Neurotóxicas/etiologia , Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Síndromes Neurotóxicas/congênito , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
14.
J Nanosci Nanotechnol ; 19(6): 3376-3387, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744765

RESUMO

In this study, reduced graphene oxide-TiO2 (RGO-TiO2) thin film was prepared by a simple self-assembly method at the gas/liquid interface. The as-prepared thin films were characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), UV-visible-diffuse reflectance spectroscopy (UV-vis-DRS) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of TiO2 and RGO-TiO2 thin film were investigated via the reduction of Cr(VI) under simulated solar light and visible light (λ > 420 nm) irradiation. The results showed that the RGO-TiO2 thin film exhibited remarkably enhanced activity for photoreduction of Cr(VI) under simulated sunlight or visible light irradiation, with a reaction rate constant of 5.7 times greater than that of pure TiO2 thin film. The main reason for enhanced photocatalytic activity is that introduction of RGO can restrain the recombination of photogenerated electron-hole pairs and reduce the aggregation of TiO2 NPs. The effects of different reaction parameters such as irradiation time, irradiation source, pH values, catalyst dosage and initial Cr(VI) concentration were investigated in detail. The highest photoreduction efficiency of Cr(VI) was achieved and the reduction rate constant k was 0.0189 min-1 during the reduction of 0.5 mg L-1 of Cr(VI) with 10 cm² RGO-TiO2 thin film at pH 2.0 and 293 K. Moreover, different scavengers were also added in the photoreduction of Cr(VI) system to identify the reactive species. Based on the results of the present study, a possible mechanism of photoreduction on RGO-TiO2 thin film under simulated solar light was proposed. Overall, this study provides a novel approach to efficiently photoreduction of Cr(VI) by RGO-TiO2 thin film.

15.
Front Oncol ; 14: 1341840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567145

RESUMO

Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia. About 2% of APL is characterized by atypical rearrangements. Here we reported one APL case with atypical manifestations and morphology. A 35-year-old woman patient, mainly due to fatigue, poor appetite for over 10 days and intermittent fever for 3 days. combined with the results of flow cytometry, fusion gene and chromosome, the patient was diagnosed as AML-M3 with atypical morphology. Double induction therapy with retinoic acid and arsenous acid was immediately administrated. Idarubicin was administrated on the 18th day. A re-examination was performed in the 5th week, both the blood routine test and myelogram showed normal results, and the fusion gene turned negative, indicating complete remission. When atypical morphology occurs, peripheral blood POX staining may be performed to check the abnormal cells. Flow cytometry, chromosome analysis, and fusion gene analysis are also required for further diagnosis.

16.
Toxicology ; 503: 153735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272385

RESUMO

Dimethyl fumarate (DMF) is an immunosuppressant commonly used to treat multiple sclerosis and other autoimmune diseases. Despite known side effects such as lymphopenia, the effect of DMF on cardiac development remains unclear. To assess this, we used zebrafish to evaluate the cardiac developmental toxicity of DMF. Our study showed that DMF reduced the survival rate of zebrafish embryos, with those exposed to 1, 1.3, and 1.6 mg/L exhibiting heart rate reduction, shortened body length, delayed yolk sac absorption, pericardial edema, increased distance from sinus venous to bulbus arteriosus, and separation of cardiomyocytes and endocardial cells at 72 hpf. Heart development-related genes showed disorder, apoptosis-related genes were up-regulated, and the oxidative stress response was down-regulated. Treatment with cysteamine ameliorated the heart development defects. Our study demonstrates that DMF induces cardiac developmental toxicity in zebrafish, possibly by down-regulating oxidative stress responses. This study provides a certain research basis for further study of DMF-induced cardiac developmental toxicity, and provides some experimental evidence for future clinical application and study of DMF.


Assuntos
Cardiopatias Congênitas , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Fumarato de Dimetilo/toxicidade , Fumarato de Dimetilo/metabolismo , Regulação para Baixo , Embrião não Mamífero , Estresse Oxidativo , Cardiotoxicidade/metabolismo
17.
Mol Neurobiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787492

RESUMO

Isavuconazole is a broad-spectrum antifungal drug used for the treatment of serious infections caused by invasive aspergillosis and mucormycosis in adults. With the continuous use of this drug, its safety and environmental impact have received increasing attention. However, information on the adverse effects of the drug is very limited. Fish is a particularly important model for assessing environmental risks. In this study, the aquatic vertebrate zebrafish was used as a model to study the toxic effects and mechanisms of isavuconazole. We exposed zebrafish embryos to 0.25, 0.5, and 1 mg/L of isavuconazole 6 h after fertilization. The results showed that at 72 hpf, isavuconazole exposure reduced heart rate, body length, and survival of zebrafish embryos compared to controls. Secondly, when isavuconazole reached a certain dose level (0.25 mg/L), it caused morphological changes in the Tg(elavl3:eGFP) transgenic fish line, with the head shrunk, the body bent, the fluorescence intensity becoming weaker, the abnormal motor behaviour, etc. At the same time, exposure of zebrafish embryos to isavuconazole downregulated acetylcholinesterase (AchE) and adenosine triphosphate (ATPase) activities but upregulated oxidative stress, thereby disrupting neural development and gene expression of neurotransmitter pathways. In addition, astaxanthin partially rescued the neurodevelopmental defects of zebrafish embryos by downregulating oxidative stress. Thus, our study suggests that isavuconazole exposure may induce neurodevelopment defects and behavioural disturbances in larval zebrafish.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38218563

RESUMO

Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.


Assuntos
Carbazóis , Cardiotoxicidade , Indóis , Compostos de Fenilureia , Piperidinas , Piridinas , Quinolinas , Peixe-Zebra , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero
19.
Chemosphere ; 344: 140283, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775055

RESUMO

Benzophenone (BP) is found in many popular consumer products, such as cosmetics. BP potential toxicity to humans and aquatic organisms has emerged as an increased concern. In current study, we utilized a zebrafish model to assess BP-induced developmental cardiotoxicity. Following BP exposure, zebrafish embryos exhibited developmental toxicity, including increased mortality, reduced hatchability, delayed yolk sac absorption, and shortened body length. Besides, BP exposure induced cardiac defects in zebrafish embryos, comprising pericardial edema, reduced myocardial contractility and rhythm disturbances, and altered expression levels of cardiac developmental marker genes. Mechanistically, BP exposure disturbed the redox state and increased the level of apoptosis in zebrafish cardiomyocytes. Transcriptional expression levels of Wnt signaling genes, involving lef1, axin2, and ß-catenin, were upregulated after BP treatment. Inhibition of Wnt signaling with IWR-1 could rescue the BP-induced cardiotoxicity in zebrafish. In summary, BP exposure causes cardiotoxicity via upregulation of the Wnt signaling pathway in zebrafish embryos.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Cardiotoxicidade , Embrião não Mamífero/metabolismo , Miócitos Cardíacos
20.
Sci Total Environ ; 859(Pt 1): 160087, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36372181

RESUMO

Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has emerged as a potential environmental pollutant. Here, to investigate the toxic effects of HFPO-TA on liver and biliary system development, zebrafish embryos were exposed to 0, 50, 100, or 200 mg/L HFPO-TA from 6 to 120 h post-fertilization (hpf). Results showed that the 50 % lethal concentration (LC50) of HFPO-TA was 231 mg/L at 120 hpf, lower than that of PFOA. HFPO-TA exposure decreased embryonic hatching, survival, and body length. Furthermore, HFPO-TA exerted higher toxicity at the specification stage than during the differentiation and maturation stages, leading to small-sized livers in Tg(fabp10a: DsRed) transgenic larvae and histopathological changes. Significant decreases in the mRNA expression of genes related to liver formation were observed. Alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL) levels were significantly increased. HFPO-TA decreased total cholesterol (TCHO) and triglyceride (TG) activities, disturbed lipid metabolism through the peroxisome proliferator-activated receptor (PPAR) pathway, and induced an inflammatory response. Furthermore, HFPO-TA inhibited intrahepatic biliary development in Tg(Tp1:eGFP) transgenic larvae and interfered with transcription of genes associated with biliary duct development. HFPO-TA reduced bile acid synthesis but increased bile acid transport, resulting in disruption of bile acid metabolism. Therefore, HFPO-TA influenced embryonic liver and biliary system morphogenesis, caused liver injury, and may be an unsafe alternative for PFOA.


Assuntos
Sistema Biliar , Fluorocarbonos , Animais , Peixe-Zebra , Fluorocarbonos/toxicidade , Fígado , Ácidos e Sais Biliares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA