Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14087, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237513

RESUMO

Dezocine is becoming dominated in China market for relieving moderate to severe pain. It is believed that Dezocine's clinical efficacy and little chance to provoke adverse events during the therapeutic process are mainly attributed to its partial agonist activity at the µ opioid receptor. In the present work, we comprehensively studied the pharmacological characterization of Dezocine and identified that the analgesic effect of Dezocine was a result of action at both the κ and µ opioid receptors. We firstly found that Dezocine displayed preferential binding to µ opioid receptor over κ and δ opioid receptors. Dezocine, on its own, weakly stimulated G protein activation in cells expressing κ and µ receptors, but in the presence of full κ agonist U50,488 H and µ agonist DAMGO, Dezocine inhibited U50,488H- and DAMGO-mediated G protein activation, indicating that Dezocine was a κ partial agonist and µ partial agonist. Then the in intro results were verified by in vivo studies in mice. We observed that Dezocine-produced antinociception was significantly inhibited by κ antagonist nor-BNI and µ antagonist ß-FNA pretreatment, indicating that Dezocine-mediated antinociception was via both the κ and µ opioid receptors. When co-administrating of Dezocine with U50,488 H or morphine, Dezocine was capable of inhibiting U50,488H- or morphine-induced antinociception. Finally, κ receptor activation-associated side effect sedation was investigated. We found that Dezocine displayed limited sedative effect with a ceiling effecting at a moderate dose. Thus, our work led to a better understanding of the analgesic mechanism of action of Dezocine in vivo.


Assuntos
Analgésicos Opioides/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Nociceptividade/efeitos dos fármacos , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Tetra-Hidronaftalenos/farmacologia , Animais , Células CHO , Cricetulus , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Masculino , Camundongos , Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Medição da Dor , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA