Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 43(13): 2759-2788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769438

RESUMO

Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Lisina , Ubiquitinação , Humanos , Lisina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estresse Fisiológico , Células HEK293 , Proliferação de Células , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação ao GTP
2.
Small ; 20(5): e2304452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752683

RESUMO

Carbon-based hole transport layer-free perovskite solar cells (PSCs) based on methylammonium lead triiodide (MAPbI3 ) have become one of the research focus due to low cost, easy preparation, and good optoelectronic properties. However, instability of perovskite under vacancy defects and stress-strain makes it difficult to achieve high-efficiency and stable power output. Here, a soft-structured long-chain 2D pentanamine iodide (abbreviated as "PI") is used to improve perovskite quality and interfacial mechanical compatibility. PI containing CH3 (CH2 )4 NH3 + and I- ions not only passivate defects at grain boundaries, but also effectively alleviate residual stress during high temperature annealing via decreasing Young's modulus of perovskite film. Most importantly, PI effectively increases matching degree of Young's modulus between MAPbI3 (47.1 GPa) and carbon (6.7 GPa), and strengthens adhesive fracture energy (Gc ) between perovskite and carbon, which is helpful for outward release of nascent interfacial stress generated under service conditions. Consequently, photoelectric conversion efficiency (PCE) of optimal device is enhanced from 10.85% to 13.76% and operational stability is also significantly improved. 83.1% output is maintained after aging for 720 h at room temperature and 25-60% relative humidity (RH). This strategy of regulation from chemistry and physics provides a strategy for efficient and stable carbon-based PSCs.

3.
Ecotoxicol Environ Saf ; 263: 115211, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418942

RESUMO

Glyphosate is the most widely used herbicide in global agricultural cultivation. However, little is known about the environmental risks associated with its migration and transformation. We conducted light irradiation experiments to study the dynamics and mechanism of photodegradation of glyphosate in ditches, ponds and lakes, and evaluated the effect of glyphosate photodegradation on algae growth through algae culture experiments. Our results showed that glyphosate in ditches, ponds and lakes could undergo photochemical degradation under sunlight irradiation with the production of phosphate, and the photodegradation rate of glyphosate in ditches could reach 86% after 96 h under sunlight irradiation. Hydroxyl radicals (•OH) was the main reactive oxygen species (ROS) for glyphosate photodegradation, and its steady-state concentrations in ditches, ponds and lakes were 6.22 × 10-17, 4.73 × 10-17, and 4.90 × 10-17 M. The fluorescence emission-excitation matrix (EEM) and other technologies further indicated that the humus components in dissolved organic matter (DOM) and nitrite were the main photosensitive substances producing •OH. In addition, the phosphate generated by glyphosate photodegradation could greatly promote the growth of Microcystis aeruginosa, thereby increasing the risk of eutrophication. Thus, glyphosate should be scientifically and reasonably applied to avoid environmental risks.


Assuntos
Poluentes Químicos da Água , Água , Fotólise , Luz Solar , Poluentes Químicos da Água/química , Fosfatos , Glifosato
4.
Int Microbiol ; 25(3): 457-469, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35094192

RESUMO

Tangxun Lake is the largest urban lake in China, which is polluted by multiple wastewaters, and now is severely eutrophic. We detected diversity, abundance, and the coexistence of Candidatus Methylomirabilis oxyfera-like and anammox bacteria in different horizontal and vertical directions of the lake sediments through qPCR and clone library. Phylogenetic tree analysis showed that the Ca. Methylomirabilis oxyfera-like and anammox bacteria exhibited high diversity, and they belonged to group B-E and Ca. Brocadia genus, respectively. These two bacteria displayed higher diversity in polluted area than in other areas. Furthermore, they had great spatial variation of abundance both horizontally and vertically. The abundance of anammox bacteria was significantly higher than that of Ca. Methylomirabilis oxyfera-like bacteria. The stronger the human interference were, the higher abundances these two bacteria exhibited horizontally, whereas both their abundances and the ratio of anammox to Ca. Methylomirabilis oxyfera-like bacteria decreased with the increasing depth. Redundancy analysis indicated that nitrate was the most influential environmental factor to the abundance of these two bacteria. Ammonia, nitrite, total nitrogen, and organic matters were in positive correlation with the abundance of these two bacteria. Nitrate was slightly negatively correlated with the abundance of Ca. Methylomirabilis oxyfera-like bacteria, while it was positively correlated with that of anammox bacteria. Our results provided an insight into the effects of environmental factors such as ammonia, nitrite, and nitrate on the diversity and abundances of these two bacteria and theoretical basis for restoration of water.


Assuntos
Lagos , Nitritos , Amônia , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/genética , Humanos , Metano , Nitratos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
5.
Ecotoxicol Environ Saf ; 246: 114155, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206639

RESUMO

Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) draw great concern due to their potential threat to aquatic ecosystems. The individual and combined effects of glyphosate and AMPA on aquatic plants in different ecological niches need to be explored. This study aimed to investigate the ecotoxicity of glyphosate and AMPA on the emergent macrophyte Acorus calamus, phytoplankton Chlorella vulgaris, and submerged macrophyte Vallisneria natans after their exposure to glyphosate and AMPA alone and to their mixture. Medium and low concentrations of glyphosate (≤ 0.5 mg L-1) significantly inhibited the growth of V. natans and promoted the growth of C. vulgaris (P < 0.05) but had no significant effect on the growth of A. calamus (P > 0.05). AMPA (≤ 5.0 mg L-1) did not significantly influence the relative growth rate (except C. vulgaris) or malonaldehyde levels but significantly altered the expression levels of chlorophyll-related genes and superoxide dismutase [Cu-Zn] genes in the aquatic plants examined. AMPA mainly affected the oxidative phosphorylation pathway in V. natans and not those in other two plants, indicating that V. natans was more sensitive to AMPA-induced oxidative damage. Moreover, antagonistic effects on plant growth were observed when plants were exposed to low concentrations of glyphosate + AMPA (≤ 0.1 + 0.1 mg L-1). When the concentration of glyphosate + AMPA reached 0.5 + 0.5 and 5.0 + 5.0 mg L-1, the growth of the submerged macrophyte was additively or synergistically inhibited, but the growth of the emergent macrophyte and phytoplankton was antagonistically inhibited. Our results indicated that both the individual and combined effects of glyphosate and AMPA might alter the vertical structure of shallow lakes and accelerate the conversion of shallow lakes from grass-based to algal-based lakes.


Assuntos
Chlorella vulgaris , Herbicidas , Herbicidas/toxicidade , Ecossistema , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Plantas , Fitoplâncton , Glifosato
6.
J Environ Manage ; 318: 115638, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949090

RESUMO

The loading of nitrogen (N) and phosphorus (P) from agricultural drainage as the non-point sources is a worldwide environmental issue for aquatic ecosystem. However, how to remove these nutrients effectively from agricultural drainage remains a big challenge with increasing cemented ditches for better management. Here, we designed a novel ecological ditch system which integrated an earth ditch and a cemented ditch with iron-loaded biochar in the Chengdu Plain to reduce the loss of N and P from farmland. After a two-year monitoring, the removal efficiency of total N and total P reached 24.9% and 36.1% by the earth ditch and 30.7% and 57.8% by the integrated ditch system, respectively. The water quality was evidently improved after passing through the ditch system with the marked decrease in the concentrations of N and P. Dissolved organic N, nitrate, and particulate P became the dominant fractions of N and P loss. Rainfall soon after fertilization increased the concentrations of N and P in the ditch system and markedly affected their removal efficiency. The iron-loaded biochar effectively removed N and P from the drainage, especially at the high concentrations, which was mainly attributed to its high adsorption of the dissolved N and P fractions and the interception of the particulate nutrients. Our results indicate that the designed ecological ditch system has a high potential for alleviating agricultural non-point source pollution in the plain area and can be extended to other lowland agricultural ecosystems.


Assuntos
Ecossistema , Poluentes Químicos da Água , Agricultura/métodos , Fazendas , Ferro , Nitrogênio/análise , Nutrientes , Fósforo , Poluentes Químicos da Água/análise
7.
Environ Monit Assess ; 195(1): 105, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374341

RESUMO

Non-point source (NPS) pollution is regarded as the major threat to water quality worldwide, and ecological ditches (EDs) are considered an important and widely used method to collect and move NPS pollutants from fields to downstream water bodies. However, few studies have been conducted to optimize the spatial locations of EDs, particularly when the watershed experiences urbanization and rapid land-use changes. As land-use patterns change the spatial distribution of NPS loads, this study used a cellular automata-Markov method to simulate future land-use changes in a typical agricultural watershed. Three scenarios are included as follows: historical trend, rapid urbanization, and ecological protection scenarios. The spatial distributions of particulate phosphorus loads were simulated using the revised universal soil loss equation and sediment transport distribution model. The results suggested that the total particulate phosphorus (TP) load in the Zhuxi watershed decreased by 10,555.2 kg from 2000 to 2020, primarily because the quality and quantity of forests in Zhuxi County improved over the last 20 years. The TP load in Zhuxi watershed would be 2588.49, 2639.15, and 2553.32 kg in 2040 in historical trend, rapid urbanization, and ecological protection scenarios, respectively, compared with 2308.1 kg in 2020. This indicated that urban expansion increases the TP load, and the faster the expansion rate, the more the TP load. Consequently, the optimal locations of EDs were determined based on the intercepted loads and the period during which they existed during land-use changes. The results suggested that rapid urbanization would consequently reduce the space available for building EDs and also increase the cost of building EDs to control the NPS pollution in the watershed.


Assuntos
Poluentes Ambientais , Poluição Difusa , Poluentes Químicos da Água , Nitrogênio/análise , Monitoramento Ambiental , Poluição Difusa/análise , Fósforo/análise , Poluentes Químicos da Água/análise , China
8.
Environ Res ; 194: 110724, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421427

RESUMO

The accumulation of atrazine in sediments raises wide concern due to its potential negative effects on aquatic environments. Here we collected sediments and different submerged macrophytes to simulate natural shallow lakes and to measure atrazine levels and submerged macrophyte biomass. We determined gene expressions in submerged macrophytes treated with or without atrazine. We also examined atrazine concentrations and its metabolite structures in submerged macrophytes. When the initial concentration of atrazine in sediments ranged from 0.1 to 2.0 mg kg-1 dry weight (DW), atrazine levels in the pore water of the sediments ranged from 0.003 to 0.05 mg L-1 in 90 days. Atrazine did not show obvious long-term effects on the biomass of Potamogeton crispus and Myriophyllum spicatum (P > 0.05). On day 90, gene expressions related to cell wall in P. crispus were changed by atrazine phytotoxicity. Moreover, the decrease in the number genes controlling light-harvesting chlorophyll a/b-binding proteins verified the toxic effects of atrazine on the photosynthesis of M. spicatum. Compared with unexposed plants on day 90, ribosome pathway was significantly enriched with differentially expressed genes after submerged macrophytes were exposed to 2.0 mg kg-1 DW atrazine (P < 0.05). In addition, shoots and roots of P. crispus and M. spicatum could absorb the equal amount of atrazine (P > 0.05). Once absorbed by submerged macrophytes, atrazine was degraded into 1-hydroxyisopropylatrazine, hydroxyatrazine, deethylatrazine, didealkylatrazine, cyanuric acid, and biuret, and some of its metabolites could conjugate with organic acids, cysteinyl ß-alanine, and glucose. This study establishes a foundation for aquatic ecological risk assessments and the phytoremediation of atrazine in sediments.


Assuntos
Atrazina , Potamogetonaceae , Atrazina/toxicidade , Clorofila A , Lagos , Transcriptoma
9.
Environ Monit Assess ; 192(6): 410, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32488345

RESUMO

Existing research on phosphorus removal from wastewater mostly focused on inorganic phosphorus while ignoring organic phosphorus, which has potential bioavailability. This study aims to provide an innovation for the development of advanced treatment material for both inorganic and organic phosphorus removal in water. In this study, ferrihydrite loaded on the graphene oxide (FeOOH-GO) composite adsorbent was synthesized by surface precipitation method, and its ability to remove both phosphate and diazinon as forms of inorganic and organic phosphorous from water was investigated. Characterization of the loaded composite using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform-infrared spectroscopy (FTIR) indicated that FeOOH was successfully loaded onto graphene. The results of batch adsorption experiments showed that the adsorbent could remove both inorganic and organic phosphorus compounds simultaneously from water. When FeOOH content is 40%, the equilibrium adsorption amount of FeOOH-GO composite adsorbent for phosphate and diazinon was 5.81 and 23.20 mg g-1, respectively. Environmental parameters such as pH and initial concentration have important influence on phosphorus removal by FeOOH-GO composite adsorbent and the removal efficiency of the inorganic and organic phosphorus from water decreases by increasing the initial concentration of phosphate and diazinon and the pH. It was concluded that the FeOOH-GO composite adsorbent has great potential to remove both inorganic and organic phosphate simultaneously from contaminated water.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Monitoramento Ambiental , Compostos Férricos , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Basic Microbiol ; 58(11): 998-1006, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30117537

RESUMO

This study investigated the community structure of ammonia-oxidizing bacteria /archaea (AOB and AOA), as well as the effects of four aquatic plants (namely Ceratophyllum demersum, Hydrilla verticillata, Potamogeton crispus, and Nymphaea tetragona) rhizospheres on the abundance of AOB amoA, AOA amoA, anammox 16S rRNA, nirK, and nirS in Lake Liangzi, China. Phylogenetic analysis revealed that most AOB groups were Nitrosospira and Nitrosomonas, in which Nitrosospira was dominant. The AOA amoA were affiliated with two branches of classical sequences which belonging to Thaumarchaeota: water/sediments branch and soil/sediments branch. The abundance of AOA amoA in the rhizospheres of aquatic plants were higher than in the non-rhizosphere (p < 0.05), indicating that aquatic plants may promote the growth of AOA. However, the anammox 16S rRNA showed the opposite trend relative to AOA amoA (p < 0.05). Redundancy analysis (RDA) showed that the differences in abundance of AOB, AOA, anammox bacteria, and denitrifying bacteria are very likely related to the different contents of ammonia nitrogen (NH4 + -N), pH and dissolved oxygen (DO) and thus to the rhizosphere states of aquatic plants.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Ciclo do Nitrogênio/genética , Filogenia , Rizosfera , Estações do Ano , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , China , Genes Arqueais/genética , Genes Bacterianos/genética , Sedimentos Geológicos/microbiologia , Oxirredução , RNA Ribossômico 16S/genética
11.
Photochem Photobiol Sci ; 16(4): 467-475, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27878158

RESUMO

The photodegradation of organic phosphorus is one of the most important processes of the phosphorus cycle by which phosphate is regenerated in the water environment. In this study, the influence of direct photolysis or indirect photolysis of organic phosphorus using natural photosensitizers on the released phosphate was examined in deionized and natural water under ultraviolet (UV) irradiation using diazinon as the organic phosphorus model. Phosphate was released when diazinon was exposed to UV light, and the solution pH also exhibited distinct influences on the phosphate that was released from diazinon photodegradation. When the natural photosensitizers were added, the amount of phosphate released increased significantly because of the diazinon indirect photodegradation by reactive species, such as the hydroxyl radical generated by NO3- and Fe3+. However, humic acid and HCO3- inhibited the phosphate released by a radical scavenging effect. When natural water was spiked with diazinon, the phosphate that was released in natural water was higher than that of the control or deionized water, and the phosphate that was released was inhibited when isopropanol was added to the reaction. In addition, the formation of hydroxyl radicals (˙OH) in the natural water systems was identified from the photoluminescence spectra using coumarin as the trapping molecule, and the steady-state concentration of ˙OH in natural water was 3.07 ± 0.57 × 10-16 M under UV irradiation. All of these results indicated that direct and indirect photolysis degradation of organic phosphorus significantly impacts the release of phosphate in surface waters.

12.
Mol Phylogenet Evol ; 90: 104-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25999054

RESUMO

Scuticociliates and hymenostomes are two groups of the ciliate class Oligohymenophorea, a diverse clade that includes two model genera, Tetrahymena and Paramecium, which have been intensively studied due to their ease of culture and their amenability to a wide range of biochemical and genetic investigations. However, phylogenetic relationships among the subclasses of the Oligohymenophorea, and especially between the Scuticociliatia and Hymenostomatia, are not clearly resolved. Here, we investigate the phylogenetic relationship between the subclasses Scuticociliatia and Hymenostomatia based on omics data. The transcriptomes of five species, comprising four oligohymenophoreans and one colpodean, were sequenced. A supermatrix was constructed for phylogenomic analyses based on 113 genes encoding 43,528 amino acid residues from 26 taxa, including ten representatives of the class Oligohymenophorea. Our phylogenomic analyses revealed that the monophyletic Scuticociliatia is sister to the monophyletic Hymenostomatia, which together form the terminal branch within the monophyletic class Oligohymenophorea. Competing hypotheses for this relationship were rejected by topological tests. Our results provide corroborative evidence for the close relationship between the subclasses Scuticociliatia and Hymenostomatia, justifying the possible use of the model hymenostome T. thermophila as an effective experimental system to study the molecular and cellular biology of the scuticociliates.


Assuntos
Oligoimenóforos/classificação , Sequência de Bases , Cilióforos/genética , Oligoimenóforos/genética , Filogenia , RNA/análise , RNA/isolamento & purificação , Análise de Sequência de RNA , Transcriptoma
13.
J Eukaryot Microbiol ; 61(4): 333-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628663

RESUMO

Ciliate metallothioneins (MTs) possess many unique features compared to the "classic" MTs in other organisms, but they have only been studied in a small number of species. In this study, we investigated cDNAs encoding subfamily 7a metallothioneins (CdMTs) in three Tetrahymena species (T. hegewischi, T. malaccensis, and T. mobilis). Four CdMT genes (ThegMT1, ThegMT2, TmalMT1, and TmobMT1) were cloned and characterized. They share high sequence similarity to previously identified subfamily 7a MT members. Tetrahymena CdMTs exhibit a remarkably regular intragenic repeat homology. The CdMT sequences were divided into two main types of modules, which had been previously described, and which we name "A" and "B". ThegMT2 was identified as the first MT isoform solely composed of module "B". A phylogenetic analysis of individual modules of every characterized Tetrahymena CdMT rigorously documents the conclusion that modules are important units of CdMT evolution, which have undergone frequent and rapid gain/loss and shuffling. The transcriptional activity of the four newly identified genes was measured under different heavy metal exposure (Cd, Cu, Zn, Pb) using real-time quantitative PCR. The results showed that these genes were differentially induced after short (1 h) or long (24 h) metal exposure. The evolutionary diversity of Tetrahymena CdMTs is further discussed with regard to their induction by metal ions.


Assuntos
Metalotioneína/genética , Tetrahymena/genética , Tetrahymena/metabolismo , Metalotioneína/classificação , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
14.
World J Surg Oncol ; 12: 117, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24758544

RESUMO

PURPOSE: To present the clinical, imaging, pathological and immunohistochemical features of giant cell angiofibroma (GCA). CASE PRESENTATION: In this paper we report an atypical case of a GCA extending from the parotid to the parapharyngeal space. The lesion was being treated as a vascular malformation for one year prior to surgical removal. We summarize the clinical manifestations, imaging, pathological and molecular features of this rare disease.After complete surgical removal of the tumor, immunohistochemical analysis revealed strong positivity for the mesenchymal markers vimentin, CD34, CD31 and CD99 in neoplastic cells. Tumor proliferation antigen marker Ki67 was partly positive (<5% of cells). Tumor cells were negative for muscle-specific actin, epithelial membrane antigen, smooth muscle actin, cytokeratin pan, S100, desmin, glial fibrillary acidic protein, myogenin, MyoD1 and F8. The morphological and immunohistochemical profile was consistent with the diagnosis of GCA. CONCLUSION: GCA is a rare soft tissue tumor that can easily be misdiagnosed in the clinical preoperative setting. In view of the clinical, pathological and molecular features of the tumor, complete surgical removal is the current optimal treatment option, providing accurate diagnosis and low to minimal recurrence rate.


Assuntos
Angiofibroma/diagnóstico , Depressores do Sistema Nervoso Central/uso terapêutico , Etanol/uso terapêutico , Células Gigantes/patologia , Malformações Vasculares/diagnóstico , Malformações Vasculares/tratamento farmacológico , Adulto , Angiofibroma/tratamento farmacológico , Angiofibroma/metabolismo , Biomarcadores Tumorais/metabolismo , Erros de Diagnóstico , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Humanos , Técnicas Imunoenzimáticas , Imageamento por Ressonância Magnética , Masculino , Prognóstico , Malformações Vasculares/metabolismo
15.
Sci Total Environ ; 946: 174059, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906286

RESUMO

Submerged macrophytes have important impacts on the denitrification and anaerobic ammonia-oxidizing (anammox) processes. Leaf damage in these plants probably changes the rhizosphere environment, affecting organic acid release and denitrifying bacteria. However, there is a lack of comprehensive understanding of the specific changes. This study investigated these changes in the rhizosphere of Potamogeton crispus with four degrees of leaf excision. When 0 %, 30 %, 50 % and 70 % of leaves were excised, the concentrations of total organic acid were 31.45, 32.67, 38.26, and 35.16 mg/L, respectively. The abundances of nirS-type denitrifying bacteria were 2.10 × 1010, 1.59 × 1010, 2.54 × 1010, and 4.67 × 1010 copies/g dry sediment, respectively. The abundances of anammox bacteria were 7.58 × 109, 4.59 × 109, 3.81 × 109, and 3.90 × 109 copies/g dry sediment, respectively. The concentration of total organic acids and the abundance of two denitrification microorganisms in the rhizosphere zone were higher than those in the root zone and non-rhizosphere zone. With increasing leaf damage, the number of OTUs in the Pseudomonas genus of nirS-type denitrifying bacteria first increased and then decreased, while that of the Thauera genus was relatively stable. The overall increase in the OTU number of anammox bacteria indicated that leaf damage promotes root exudates release, thereby leading to an increase in their diversity. The co-occurrence network revealed that the two denitrification microorganisms had about 60.52 % positive connections in rhizosphere while 64.73 % negative connections in non-rhizosphere. The abundance and community composition of both denitrification microorganisms were positively correlated with the concentrations of various substances such as oxalic acid, succinic acid, total organic acids and NO2--N. These findings demonstrate that submerged plant damage has significantly impacts on the structure of denitrification microbial community in the rhizosphere, which may alter the nitrogen cycling process in the deposit sediment. SYNOPSIS: This study reveals leaf damage of macrophyte changed the rhizosphere denitrification microbial community, which is helpful to further understand the process of nitrogen cycle in water.

16.
J Hazard Mater ; 462: 132757, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865072

RESUMO

Accelerated eutrophication in lakes reduces the number of submerged macrophytes and alters the residues of glyphosate and its degradation products. However, the effects of submerged macrophytes on the fate of glyphosate remain unclear. We investigated eight lakes with varying trophic levels along the middle and lower reaches of the Yangtze River in China, of which five lakes contained either glyphosate or aminomethylphosphate (AMPA). Glyphosate and AMPA residues were significantly positively correlated with the trophic levels of lakes (P < 0.01). In lakes, glyphosate is degraded through the AMPA and sarcosine pathways. Eight shared glyphosate-degrading enzymes and genes were observed in different lake sediments, corresponding to 44 degrading microorganisms. Glyphosate concentrations in sediments were significantly higher in lakes with lower abundances of soxA (sarcosine oxidase) and soxB (sarcosine oxidase) (P < 0.05). In the presence of submerged macrophytes, oxalic and malonic acids secreted by the roots of submerged macrophytes increased the abundance of glyphosate-degrading microorganisms containing soxA or soxB (P < 0.05). These results revealed that a decrease in the number of submerged macrophytes in eutrophic lakes may inhibit glyphosate degradation via the sarcosine pathway, leading to a decrease in glyphosate degradation and an increase in glyphosate residues.


Assuntos
Lagos , Sarcosina , Lagos/química , Sarcosina Oxidase , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Exsudatos e Transudatos , China , Eutrofização , Glifosato
17.
Sci Rep ; 14(1): 6053, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480774

RESUMO

The bioactivity of interferon-γ (IFN-γ) in cancer cells in the tumor microenvironment (TME) is not well understood in the current immunotherapy era. We found that IFN-γ has an immunosuppressive effect on colorectal cancer (CRC) cells. The tumor volume in immunocompetent mice was significantly increased after subcutaneous implantation of murine CRC cells followed by IFN-γ stimulation, and RNA sequencing showed high expression of B7 homologous protein 4 (B7H4) in these tumors. B7H4 promotes CRC cell growth by inhibiting the release of granzyme B (GzmB) from CD8+ T cells and accelerating apoptosis in CD8+ T cells. Furthermore, interferon regulatory factor 1 (IRF1), which binds to the B7H4 promoter, is positively associated with IFN-γ stimulation-induced expression of B7H4. The clinical outcome of patients with CRC was negatively related to the high expression of B7H4 in cancer cells or low expression of CD8 in the microenvironment. Therefore, B7H4 is a biomarker of poor prognosis in CRC patients, and interference with the IFN-γ/IRF1/B7H4 axis might be a novel immunotherapeutic method to restore the cytotoxic killing of CRC cells.


Assuntos
Neoplasias Colorretais , Linfócitos T Citotóxicos , Humanos , Animais , Camundongos , Interferon gama/farmacologia , Linfócitos T CD8-Positivos , Microambiente Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
18.
Environ Sci Pollut Res Int ; 30(2): 4642-4652, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35974265

RESUMO

Adsorption technology can effectively remove phosphorus from water and realize phosphorus recovery. Hence, it is used to curb the eutrophication of water and alleviate the crisis caused by the shortage of phosphorus resources. Resin has been attracting increasing interest as an ideal adsorption material; however, its practical application is greatly affected by environmental factors. To solve the competitive adsorption and pore blockage caused by humic acid and coexisting ions during the removal of phosphorus by ion-exchange resin, this study has developed an iron-manganese oxide-modified resin composite adsorbent (Fe/Mn-402) based on the nanoconfinement theory. The structural characterization results of XRD, FT-IR, SEM, and XPS showed that the iron-manganese binary oxide was successfully loaded on the skeleton of the strongly alkaline anion resin and showed good stability under both neutral and alkaline conditions. The batch adsorption experiments showed that the maximum adsorption capacity of Fe/Mn-402 for phosphorus can reach up to 50.97 mg g-1 under the optimal raw material ratio (Fe:Mn = 1:1). In addition, Fe/Mn-402 shows good selectivity for phosphorus removal. Fe/Mn-402 can maintain good adsorption performance for phosphate even under high concentrations of SO42-, HCO3-, and humic acid. The regenerated Fe/Mn-402 can be recycled without any obvious change in its treatment capacity. Hence, it is suitable for stable, long-term usage. In general, this work puts forward a new idea for the development of phosphorus-removal adsorbents for the treatment of wastewater containing coexisting ions and HA.


Assuntos
Manganês , Poluentes Químicos da Água , Manganês/química , Ferro/química , Fosfatos , Substâncias Húmicas/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos/química , Água , Fósforo , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
19.
Front Microbiol ; 14: 1267299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869680

RESUMO

In order to explore the species composition, spatial distribution and relationship between the phytoplankton community and environmental factors in Lake Longhu, the phytoplankton community structures and environmental factors were investigated in July 2020. Clustering analysis (CA) and analysis of similarities (ANOSIM) were used to identify differences in phytoplankton community composition. Generalized additive model (GAM) and variance partitioning analysis (VPA) were further analyzed the contribution of spatial distribution and environmental factors in phytoplankton community composition. The critical environmental factors influencing phytoplankton community were identified using redundancy analysis (RDA). The results showed that a total of 68 species of phytoplankton were found in 7 phyla in Lake Longhu. Phytoplankton density ranged from 4.43 × 105 to 2.89 × 106 ind./L, with the average density of 2.56 × 106 ind./L; the biomass ranged from 0.58-71.28 mg/L, with the average biomass of 29.38 mg/L. Chlorophyta, Bacillariophyta and Cyanophyta contributed more to the total density, while Chlorophyta and Cryptophyta contributed more to the total biomass. The CA and ANOSIM analysis indicated that there were obvious differences in the spatial distribution of phytoplankton communities. The GAM and VPA analysis demonstrated that the phytoplankton community had obvious distance attenuation effect, and environmental factors had spatial autocorrelation phenomenon, which significantly affected the phytoplankton community construction. There were significant distance attenuation effects and spatial autocorrelation of environmental factors that together drove the composition and distribution of phytoplankton community structure. In addition, pH, water temperature, nitrate nitrogen, nitrite nitrogen and chemical oxygen demand were the main environmental factors affecting the composition of phytoplankton species in Lake Longhu.

20.
Water Res ; 236: 119954, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098318

RESUMO

Phosphate release from particulate organic matter (POM) dominates phosphorus (P) cycling in aquatic ecosystems. However, the mechanisms underlying P release from POM remain poorly understood because of complex fractionation and analytical challenges. In this study, the release of dissolved inorganic phosphate (DIP) during POM photodegradation was assessed using excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). POM in suspension was significantly photodegraded under light irradiation, concomitantly with the production and release of DIP in the aqueous solution. Chemical sequential extraction revealed that organic phosphorus (OP) in POM participated in photochemical reactions. Moreover, FT-ICR MS analysis revealed that the average molecular weight of P-containing formulas decreased from 374.2 to 340.1 Da. Formulas containing P with a lower oxidation degree and unsaturation were preferentially photodegraded, generating oxygen-enriched and saturated formula compounds, such as protein- and carbohydrate-like P-containing formulas, benefiting further utilization of P by organisms. Reactive oxygen species played an important role in the photodegradation of POM, and excited triplet state chromophoric dissolved organic matter (3CDOM*) was mainly responsible for POM photodegradation. These results provide new insights into the P biogeochemical cycle and POM photodegradation in aquatic ecosystems.


Assuntos
Ecossistema , Material Particulado , Material Particulado/química , Fotólise , Fosfatos , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA