Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200384

RESUMO

Influenza A virus (IAV) H1N1 infection is a constant threat to human health and it remains so due to the lack of an effective treatment. Since melatonin is a potent antioxidant and anti-inflammatory molecule with anti-viral action, in the present study we used melatonin to protect against H1N1 infection under in vitro and in vivo conditions. The death rate of the H1N1-infected mice was negatively associated with the nose and lung tissue local melatonin levels but not with serum melatonin concentrations. The H1N1-infected AANAT-/- melatonin-deficient mice had a significantly higher death rate than that of the WT mice and melatonin administration significantly reduced the death rate. All evidence confirmed the protective effects of melatonin against H1N1 infection. Further study identified that the mast cells were the primary targets of melatonin action, i.e., melatonin suppresses the mast cell activation caused by H1N1 infection. The molecular mechanisms involved melatonin down-regulation of gene expression for the HIF-1 pathway and inhibition of proinflammatory cytokine release from mast cells; this resulted in a reduction in the migration and activation of the macrophages and neutrophils in the lung tissue. This pathway was mediated by melatonin receptor 2 (MT2) since the MT2 specific antagonist 4P-PDOT significantly blocked the effects of melatonin on mast cell activation. Via targeting mast cells, melatonin suppressed apoptosis of alveolar epithelial cells and the lung injury caused by H1N1 infection. The findings provide a novel mechanism to protect against the H1N1-induced pulmonary injury, which may better facilitate the progress of new strategies to fight H1N1 infection or other IAV viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , Melatonina , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Mastócitos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Pulmão
2.
J Biol Chem ; 299(8): 105015, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414146

RESUMO

The initial formation of the follicular antrum (iFFA) serves as a dividing line between gonadotropin-independent and gonadotropin-dependent folliculogenesis, enabling the follicle to sensitively respond to gonadotropins for its further development. However, the mechanism underlying iFFA remains elusive. Herein, we reported that iFFA is characterized by enhanced fluid absorption, energy consumption, secretion, and proliferation and shares a regulatory mechanism with blastula cavity formation. By use of bioinformatics analysis, follicular culture, RNA interference, and other techniques, we further demonstrated that the tight junction, ion pumps, and aquaporins are essential for follicular fluid accumulation during iFFA, as a deficiency of any one of these negatively impacts fluid accumulation and antrum formation. The intraovarian mammalian target of rapamycin-C-type natriuretic peptide pathway, activated by follicle-stimulating hormone, initiated iFFA by activating tight junction, ion pumps, and aquaporins. Building on this, we promoted iFFA by transiently activating mammalian target of rapamycin in cultured follicles and significantly increased oocyte yield. These findings represent a significant advancement in iFFA research, further enhancing our understanding of folliculogenesis in mammals.


Assuntos
Aquaporinas , Junções Íntimas , Animais , Feminino , Aquaporinas/genética , Hormônio Foliculoestimulante , Gonadotropinas , Bombas de Íon , Mamíferos , Serina-Treonina Quinases TOR/genética , Camundongos , Peptídeo Natriurético Tipo C/metabolismo
3.
BMC Genomics ; 25(1): 637, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926663

RESUMO

Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.


Assuntos
Fator 5 de Crescimento de Fibroblastos , Edição de Genes , Desenvolvimento Muscular , Miostatina , Animais , Miostatina/genética , Miostatina/metabolismo , Desenvolvimento Muscular/genética , Ovinos , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/metabolismo , Diferenciação Celular , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia
4.
Pharmacol Res ; : 107290, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960012

RESUMO

The placenta, as a "transit station" between mother and fetus, has functions delivering nutrients, excreting metabolic wastes and secreting hormones. A healthy placenta is essential for fetal growth and development while the melatonergic system seems to play a critical physiological role in this organ since melatonin, its synthetic enzymes and receptors are present in the placenta. In current study, Mtnr1a and Mtnr1b knockout mice were constructed to explore the potential roles of melatonergic system played on the placental function and intrauterine growth retardation (IUGR). The result showed that Mtnr1a knockout had little effect on placental function while Mtnr1b knockout reduced placental efficiency and increased IUGR. Considering the extremely high incidence of IURG in sows, the pregnant sows were treated with melatonin. This treatment reduced the incidence of IUGR. All the evidence suggests that the intact melatonergic system in placenta is required for its function. Mechanistical studies uncovered that Mtnr1b knockout increased placental oxidative stress and apoptosis but reduced the angiogenesis. The RNA sequencing combined with histochemistry study identified the reduced angiogenesis and placental vascular density in Mtnr1b knockout mice. These alterations were mediated by the disrupted STAT3/VEGFR2/PI3K/AKT pathway, i.e., Mtnr1b knockout reduced the phosphorylation of STAT3 which is the promotor of VEGFR2. The downregulated VEGFR2 and its downstream elements of PI3K and AKT expressions, then, jeopardizes the angiogenesis and placental development.

5.
Cryobiology ; 114: 104794, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37981093

RESUMO

Beijing You Chicken, a valuable local chicken breed from Beijing, China, was once listed as an endangered breed. From the point of view of conservation, the preservation of this breed is an important task for the local researchers. Semen cryopreservation is a popular method to maintain valuable species. However, during cryopreservation, semen is susceptible to oxidative damage. Melatonin is a potent antioxidant and free radical scavenger, so it has been selected to improve the efficiency of sperm cryopreservation. In this study, the chicken semen was treated with different concentrations of melatonin in the cryopreservation solution. The results showed that melatonin at concentrations of 10-3 M and 10-5 M significantly improved sperm progressive motility and total motility, respectively, compared to the control (P < 0.05). Melatonin at 10-3 M also significantly improved the plasma membrane and acrosome integrity of spermatozoa compared to the control. The mechanisms are that melatonin significantly reduces the level of ROS and preserves sperm mitochondrial membrane potential. Most importantly, the melatonin-treated cryopreserved chicken sperm after artificial insemination significantly increased the hatching rate of chicks compared to the control (p < 0.05). The results show that melatonin has a positive effect on the quality of the cryopreserved spermatozoa. These results provide the theoretical and practical basis for using melatonin to improve Beijing You Chicken conservation, and they may also be applicable to poultry as a whole.


Assuntos
Melatonina , Preservação do Sêmen , Masculino , Animais , Galinhas , Melatonina/farmacologia , Criopreservação/métodos , Sêmen , Pequim , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Motilidade dos Espermatozoides , Análise do Sêmen
6.
BMC Genomics ; 24(1): 502, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648999

RESUMO

BACKGROUND: As an important reproductive hormone, melatonin plays an important role in regulating the reproductive activities of sheep and other mammals. Hu sheep is a breed favoring for meat, with prolific traits. In order to explore the relationship between melatonin and reproductive function of Hu sheep, 7,694,759 SNPs were screened out through the whole genome sequencing analysis from high and low melatonin production Hu sheep. RESULTS: A total of 68,673 SNPs, involving in 1126 genes, were identified by ED association analysis. Correlation analysis of SNPs of AANAT/ASMT gene and MTNR1A/MTNR1B gene were carried out. The melatonin level of CG genotype 7,981,372 of AANAT, GA genotype 7,981,866 of ASMT and GG genotype 17,355,171 of MTNR1A were higher than the average melatonin level of 1.64 ng/mL. High melatonin Hu sheep appear to have better multiple reproductive performance. CONCLUSIONS: By using different methods, three SNPs which are associated with high melatonin production trait have been identified in Hu sheep. These 3 SNPs are located in melatonin synthetase AANAT/ASMT and receptor MTNR1A, respectively. Considering the positive association between melatonin production and reproductive performance in ruminants, these three SNPs can be served as the potential molecular markers for breading Hu sheep with the desirable reproductive traits.


Assuntos
Melatonina , Ovinos/genética , Animais , Melatonina/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Genótipo , Pão , Mamíferos
7.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762358

RESUMO

The diagnosis of ewes' pregnancy status at an early stage is an efficient way to enhance the reproductive output of sheep and allow producers to optimize production and management. The techniques of proteomics and metabolomics have been widely used to detect regulatory factors in various physiological processes of animals. The aim of this study is to explore the differential metabolites and proteins in the serum of pregnant and non-pregnant ewes by proteomics and metabolomics. The serum of ewes at 21, 28 and 33 days after artificial insemination (AI) were collected. The pregnancy stratus of the ewes was finally determined through ultrasound examination and then the ewes were grouped as Pregnant (n = 21) or N on-pregnant (n = 9). First, the serum samples from pregnant or non-pregnant ewes at 21 days after AI were selected for metabolomic analysis. It was found that the level of nine metabolites were upregulated and 20 metabolites were downregulated in the pregnant animals (p < 0.05). None of these differential metabolomes are suitable as markers of pregnancy due to their small foldchange. Next, the proteomes of serum from pregnant or non-pregnant ewes were evaluated. At 21 days after AI, the presence of 321 proteins were detected, and we found that the level of three proteins were upregulated and 11 proteins were downregulated in the serum of pregnant ewes (p < 0.05). The levels of serum amyloid A (SAA), afamin (AFM), serpin family A member 6 (SERPINA6) and immunoglobulin-like domain-containing protein between pregnant and non-pregnant ewes at 21-, 28- and 33-days post-AI were also analyzed via enzyme-linked immunosorbent assay (ELISA). The levels of SAA and AFM were significantly higher in pregnant ewes than in non-pregnant ewes, and could be used as markers for early pregnancy detection. Overall, our results show that SAA and AFM are potential biomarkers to determine the early pregnancy status of ewes.

8.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108290

RESUMO

In the current study, using Aanat and Mt2 KO mice, we observed that the preservation of the melatonergic system is essential for successful early pregnancy in mice. We identified that aralkylamine N-acetyltransferase (AANAT), melatonin receptor 1A (MT1), and melatonin receptor 1B (MT2) were all expressed in the uterus. Due to the relatively weak expression of MT1 compared to AANAT and MT2, this study focused on AANAT and MT2. Aanat and Mt2 KO significantly reduced the early implantation sites and the abnormal morphology of the endometrium of the uterus. Mechanistical analysis indicated that the melatonergic system is the key player in the induction of the normal nidatory estrogen (E2) response for endometrial receptivity and functions by activating the STAT signaling pathway. Its deficiency impaired the interactions between the endometrium, the placenta, and the embryo. The reduction in melatonin production caused by Aanat KO and the impairment of signal transduction caused by Mt2 KO reduced the uterine MMP-2 and MMP-9 activity, resulting in a hyperproliferative endometrial epithelium. In addition, melatonergic system deficiency also increased the local immunoinflammatory reaction with elevated local proinflammatory cytokines leading to early abortion in the Mt2 KO mice compared to the WT mice. We believe that the novel data obtained from the mice might apply to other animals including humans. Further investigation into the interaction between the melatonergic system and reproductive effects in different species would be worthwhile.


Assuntos
Arilalquilamina N-Acetiltransferase , Receptor MT2 de Melatonina , Animais , Feminino , Humanos , Camundongos , Gravidez , Acetiltransferases/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Endométrio/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Útero/metabolismo
9.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894983

RESUMO

Antithrombin III is an important anticoagulant factor with anti-inflammatory properties. However, few studies have explored its anti-inflammatory actions in ATIII overexpressed transgenic animals. In this study, the dairy goats with mammary overexpression of ATIII were used to investigate their general health, milk quality and particularly their response to inflammatory challenge. The results showed that transgenic goats have a normal phenotype regarding their physiological and biochemical parameters, including whole blood cells, serum protein levels, total cholesterol, urea nitrogen, uric acid, and total bilirubin, compared to the WT. In addition, the quality of milk also improved in transgenic animals compared to the WT, as indicated by the increased milk fat and dry matter content and the reduced somatic cell numbers. Under the stimulation of an LPS injection, the transgenic goats had elevated contents of IGA, IGM and superoxide dismutase SOD, and had reduced proinflammatory cytokine release, including IL-6, TNF-α and IFN-ß. A 16S rDNA sequencing analysis also showed that the transgenic animals had a similar compositions of gut microbiota to the WT goats under the stimulation of LPS injections. Mammary gland ATIII overexpression in dairy goats is a safe process, and it did not jeopardize the general health of the transgenic animals; moreover, the compositions of their gut microbiota also improved with the milk quality. The LPS stimulation study suggests that the increased ATIII expression may directly or indirectly suppress the inflammatory response to increase the resistance of transgenic animals to pathogen invasion. This will be explored in future studies.


Assuntos
Antitrombina III , Lipopolissacarídeos , Animais , Feminino , Lipopolissacarídeos/farmacologia , Antitrombina III/metabolismo , Leite/química , Animais Geneticamente Modificados , Anticoagulantes/farmacologia , Cabras/genética , Nível de Saúde , Glândulas Mamárias Animais/metabolismo , Lactação
10.
FASEB J ; 35(9): e21783, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403510

RESUMO

Melatonin is a pleiotropic molecule with a variety of biological functions, which include its immunoregulatory action in mammals. Brucellosis is a worldwide endemic zoonotic disease caused by the Brucella, which not only causes huge economic losses for the livestock industry but also impacts human health. To target this problem, in current study, two marker-free transgenic sheep overexpressing melatonin synthetic enzyme ASMT (acetylserotonin O-methyltransferase) gene were generated and these melatonin enrich transgenic sheep were challenged by Brucella infection. The results showed that the serum melatonin concentration was significantly higher in transgenic sheep than that of wild type (726.92 ± 70.6074 vs 263.10 ± 34.60 pg/mL, P < .05). Brucella challenge test showed that two thirds (4/6) of the wild-type sheep had brucellosis, while none of the transgenic sheep were infected. Whole-blood RNA-seq results showed that differential expression genes (DEGs) were significantly enriched in natural killer cell-mediated cytotoxicity, phagosome, antigen processing, and presentation signaling pathways in overexpression sheep. The DEGs of toll-like receptors (TLRs) and NOD-like receptors (NLRs) families were verified by qPCR and it showed that TLR1, TLR2, TLR7, CD14, NAIP, and CXCL8 expression levels in overexpression sheep were significantly higher and NLRP1, NLRP3, and TNF expression levels were significantly lower than those of wild type. The rectal feces were subjected to 16S rDNA amplicon sequencing, and the microbial functional analysis showed that the transgenic sheep had significantly lower abundance of microbial genes related to infectious diseases compared to the wild type, indicating overexpression animals are likely more resistant to infectious diseases than wild type. Furthermore, exogenous melatonin treatment relieved brucellosis inflammation by upregulating anti-inflammatory cytokines IL-4 and downregulating pro-inflammatory IL-2, IL-6, and IFN-γ. Our preliminary results provide an informative reference for the study of the relationship between melatonin and brucellosis.


Assuntos
Acetilserotonina O-Metiltransferasa/genética , Brucelose/genética , Brucelose/imunologia , Microbioma Gastrointestinal , Transdução de Sinais/imunologia , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Animais Geneticamente Modificados , Brucelose/prevenção & controle , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Mediadores da Inflamação/imunologia , Melatonina/uso terapêutico , Ovinos/imunologia
11.
Molecules ; 27(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056885

RESUMO

BACKGROUND: Transgenic animal production is an important means of livestock breeding and can be used to model pharmaceutical applications. METHODS: In this study, to explore the biological activity of endogenously produced melatonin, Acetylserotonin-O-methyltransferase (ASMT)-overexpressed melatonin-enriched dairy goats were successfully generated through the use of pBC1-ASMT expression vector construction and prokaryotic embryo microinjection. RESULTS: These transgenic goats have the same normal phenotype as the wild-type goats (WT). However, the melatonin levels in their blood and milk were significantly increased (p < 0.05). In addition, the quality of their milk was also improved, showing elevated protein content and a reduced somatic cell number compared to the WT goats. No significant changes were detected in the intestinal microbiota patterns between groups. When the animals were challenged by the intravenous injection of E. coli, the ASMT-overexpressed goats had a lower level of pro-inflammatory cytokines and higher anti-inflammatory cytokines compared to the WT goats. Metabolic analysis uncovered a unique arachidonic acid metabolism pattern in transgenic goats. CONCLUSIONS: The increased melatonin production due to ASMT overexpression in the transgenic goats may have contributed to their improved milk quality and enhanced the anti-inflammatory ability compared to the WT goats.


Assuntos
Acetilserotonina O-Metiltransferasa
12.
Biol Reprod ; 104(2): 430-444, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33571374

RESUMO

Corpus luteum (CL) plays a critical role in mammalian reproductive physiology. Its dysfunction will lead to infertility or habitual abortion. In the current study, by use of melatonin specific membrane receptor 2 (MT2) knocking out (KO) mice model combined with RNA-Seq, immunohistochemistry, and immunofluorescence analyses, the genes of melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT) and MT2 were identified to strongly express in the CL of sows and mice. KO MT2 significantly impaired the reproductive performance in mice indicated by the reduced litter sizes. Melatonin treatment elevated the progesterone production in sows suggesting the improved CL function. Mechanistic analysis showed that melatonin upregulated a set of progesterone synthesis-related genes including cytochrome P450 family 11 subfamily A member 1 (Cyp11a1), aldo-keto reductase family 1, member C18 (Akr1c18), isopentenyl-diphosphate delta isomerase 1 (Idi1), and luteinizing hormone/choriogonadotropin receptor (Lhcgr). The upregulation of these genes directly related to the increased progesterone production. The regulatory effects of melatonin on these gene expressions were mediated by MT2 and MT2KO diminished the effects of melatonin in this respect. Thus, the presence of melatonergic system of AANAT, melatonin, and its receptor MT2 in CL is essential for reproductive success in mammals.


Assuntos
Arilalquilamina N-Acetiltransferase/metabolismo , Transtornos de Estresse por Calor/veterinária , Melatonina/metabolismo , Melatonina/farmacologia , Receptores de Melatonina/metabolismo , Ração Animal , Animais , Arilalquilamina N-Acetiltransferase/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Fertilidade , Regulação da Expressão Gênica/efeitos dos fármacos , Transtornos de Estresse por Calor/metabolismo , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Melatonina/administração & dosagem , Camundongos , Camundongos Knockout , Receptores de Melatonina/genética , Suínos
13.
Biol Reprod ; 104(6): 1322-1336, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33709108

RESUMO

Leydig cells play a critical role in male reproductive physiology, and their dysfunction is usually associated with male infertility. Melatonin has an important protective and regulatory role in these cells. However, the lack of suitable animal models impedes us from addressing the impact of endogenous melatonin on these cells. In the current study, by using arylalkylamine N-acetyltransferase (AANAT) overexpression transgenic sheep and AANAT knockout mice, we confirmed the regulatory effects of endogenously occurring melatonin on Leydig cells as well as its beneficial effects on male reproductive performance. The results showed that the endogenously elevated melatonin level was correlated with decreased Leydig cell apoptosis, increased testosterone production, and improved quality of sperm in melatonin-enriched transgenic mammals. Signal transduction analysis indicated that melatonin targeted the mitochondrial apoptotic Bax/Bcl2 pathway and thus suppressed Leydig cell apoptosis. In addition, melatonin upregulated the expression of testosterone synthesis-related genes of Steroidogenic Acute Regulatory Protein (StAR), Steroidogenic factor 1 (SF1), and Transcription factor GATA-4 (Gata4) in Leydig cells. This action was primarily mediated by the melatonin nuclear receptor RAR-related orphan receptor alpha (RORα) since blockade of this receptor suppressed the effect of melatonin on testosterone synthesis. All of these actions of melatonin cause Leydig cells to generate more testosterone, which is necessary for spermatogenesis in mammals. In contrast, AANAT knockout animals have dysfunctional Leydig cells and reduced reproductive performance.


Assuntos
Antioxidantes/farmacologia , Células Intersticiais do Testículo/metabolismo , Melatonina/farmacologia , Reprodução , Carneiro Doméstico/fisiologia , Testosterona/biossíntese , Animais , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout
14.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500708

RESUMO

The purpose of this study is to investigate the potential effects of 5-hydroxytryptophan (5-HTP) duodenal perfusion on melatonin (MT) synthesis in the gastrointestinal (GI) tract of sheep. 5-hydroxytryptophan is a precursor in the melatonin synthetic pathway. The results showed that this method significantly increased melatonin production in the mucosa of all segments in GI tract including duodenum, jejunum, ileum, cecum and colon. The highest melatonin level was identified in the colon and this indicates that the microbiota located in the colon may also participate in the melatonin production. In addition, portion of the melatonin generated by the GI tract can pass the liver metabolism and enters the circulation via portal vein. The current study provides further evidence to support that GI tract is the major site for melatonin synthesis and the GI melatonin also contributes to the circulatory melatonin level since plasma melatonin concentrations in 5-HTP treated groups were significantly higher than those in the control group. In conclusion, the results show that 10-50 mg of 5-HTP flowing into the duodenum within 6 h effectively improve the production of melatonin in the GI tract and melatonin concentration in sheep blood circulation during the day.


Assuntos
5-Hidroxitriptofano/metabolismo , Trato Gastrointestinal/metabolismo , Melatonina/metabolismo , Ração Animal , Animais , Colo/metabolismo , Duodeno/metabolismo , Íleo/metabolismo , Jejuno/metabolismo , Glândula Pineal/metabolismo , Ovinos
15.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803091

RESUMO

Although melatonin has been extensively studied in animal reproduction, the mechanism of melatonin in puberty remains elusive. This study was designed to explore the effect of intraperitoneal administration of melatonin on puberty onset in female mice. The injection of melatonin into postnatal days 10 mice at a dose of 15 mg/kg accelerated the puberty onset in mice. Mechanistically, there was no difference in physical growth and serum Leptin levels after melatonin administration. Meanwhile, the serum levels of reproductive hormones involved in hypothalamic-pituitary-ovarian axis, such as FSH and estrogen level in serum were increased. The mRNA levels of GnRH and GnRHr were not affected by melatonin, while the expressions of FSHß in pituitary and Cyp19a1 in ovary were significantly up-regulated. In addition, melatonin still promoted FSH synthesis after ovariectomy. Furthermore, the enhanced activity of ERK1/2 signaling verified that the expression of FSHß increased in pituitary. We confirmed that melatonin promoted the FSH synthesis in pituitary, thereby increased serum estrogen levels and ultimately accelerated puberty onset. However, these effects of melatonin may be pharmacological due to the high dose. This study would help us to understand the functions of melatonin in pubertal regulation comprehensively.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Melatonina/farmacologia , Maturidade Sexual/efeitos dos fármacos , Animais , Aromatase/metabolismo , China , Estrogênios/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Injeções Intraperitoneais , Leptina/metabolismo , Hormônio Luteinizante/metabolismo , Melatonina/metabolismo , Camundongos , Ovário/efeitos dos fármacos , Hipófise/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Receptores LHRH/metabolismo , Maturidade Sexual/fisiologia
16.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562613

RESUMO

Mastitis is a common disease in cows breeding. The milk quality will be significantly reduced with increased milk somatic cells, which often occurs in cows with mastitis. In this study, the influence of seasonal changes, age and lactation stages in the Dairy Herd Improvement (DHI) of cows was investigated. Then, the Dairy Herd Improvement (DHI) of cows with high somatic cell score (SCS) after melatonin treatment was systemically investigated. The results showed that melatonin significantly suppressed the milk somatic cell score under all of the tested conditions. The melatonin treatment also improved the milk nutritional value by reducing its fat but increasing its lactose and protein contents. The application of melatonin significantly improved the DHI. The beneficial effects of melatonin on DHI are likely attributed to the antioxidant and anti-inflammatory activities of melatonin.


Assuntos
Bovinos , Indústria de Laticínios , Melatonina/farmacologia , Animais , Bovinos/fisiologia , Contagem de Células , Feminino , Lactação/efeitos dos fármacos
17.
Reproduction ; 158(5): 415-427, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505467

RESUMO

NLRP (NACHT, LRR and PYD domain-containing proteins) family plays pivotal roles in mammalian reproduction. Mutation of NLRP7 is often associated with human recurrent hydatidiform moles. Few studies regarding the functions of NLRP7 have been performed in other mammalian species rather than humans. In the current study, for the first time, the function of NLRP7 has been explored in ovine ovary. NLRP7 protein was mainly located in ovarian follicles and in in vitro pre-implantation embryos. To identify its origin, 763 bp partial CDS of NLRP7 deriving from sheep cumulus oocyte complexes (COCs) was cloned, it showed a great homology with Homo sapiens. The high levels of mRNA and protein of NLRP7 were steadily expressed in oocytes, parthenogenetic embryos or IVF embryos. NLRP7 knockdown by the combination of siRNA and shRNA jeopardized both the parthenogenetic and IVF embryo development. These results strongly suggest that NLRP7 plays an important role in ovine reproduction. The potential mechanisms of NLRP7 will be fully investigated in the future.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/genética , Ovário/metabolismo , Ovinos , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização in vitro/efeitos dos fármacos , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Partenogênese/efeitos dos fármacos , Partenogênese/genética , Gravidez , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reprodução/genética , Ovinos/embriologia , Ovinos/genética , Ovinos/metabolismo
18.
Reproduction ; 158(2): 123-133, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158818

RESUMO

α-Ketoglutarate (α-KG) is an intermediary metabolite in the tricarboxylic acid (TCA) cycle and functions to inhibit ATPase and maintain the pluripotency of embryonic stem cells (ESCs); however, little is known regarding the effects of α-KG on the development of preimplantation embryos. Herein, we report that α-KG (150 µM) treatment significantly promoted the blastocyst rate, the number of inner cell mass (ICM) cells and foetal growth after embryo transfer. Mechanistic studies revealed two important pathways involved in the α-KG effects on embryo development. First, α-KG modulates mitochondria function by inducing relatively low ATP production without modification of mitochondrial copy number. The relatively low energy metabolism preserves the pluripotency and competence of the ICM. Second, α-KG modifies epigenetics in embryos cultured in vitro by affecting the activity of the DNA demethylation enzyme TET and the DNA methylation gene Dnmt3a to increase the ratio of 5hmC/5mC ratio. Elevation of the 5hmC/5mC ratio not only promotes the pluripotency of the ICM but also leads to a methylation level in an in vitro embryo close to that in an in vivo embryo. All these functions of α-KG collectively contribute to an increase in the number of ICM cells, leading to greater adaptation of cultured embryos to in vitro conditions and promoting foetal growth after embryo transfer. Our findings provide basic knowledge regarding the mechanisms by which α-KG affects embryo development and cell differentiation.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Transferência Embrionária , Epigênese Genética , Ferro/metabolismo , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de RNA
19.
J Pineal Res ; 66(3): e12559, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30648765

RESUMO

Melatonin is a natural molecule produced in the pineal gland and other tissues. It participates in numerous biological activities including the regulation of reproduction. However, the mechanism by which melatonin affects mammalian female reproductive performance is not fully investigated. In the present study, it was observed that melatonin positively regulated the level of leptin in female mouse and pig. To understand the potential association between melatonin and leptin on the female reproductive activities, the melatonin receptor 1 MT1 knockout (MT1-/- ) mouse and Leptin knockout (Leptin-/- ) pig were created. It was found that the deficiency of M T1 caused low leptin secretion and litter size in mouse. Meanwhile, the deletion of leptin in pig did not affect melatonin production, but significantly reduced follicle-stimulating hormone, estradiol-17ß (E2), and Luteinizing hormone and increased progesterone (P) at estrum stage, which also led to smaller litter size than that in control. Melatonin treatment increased the production of leptin in pigs, while the supplementary of leptin was also able to improve the ovulation number, polar body rates, and expression of StAR in MT1-/- females. Therefore, it is first time, we described that leptin is the downstream target of melatonin in regulating female reproduction. These findings provide the novel information on the physiology of melatonin in animal reproduction.


Assuntos
Leptina/metabolismo , Melatonina/metabolismo , Animais , Feminino , Técnicas de Inativação de Genes , Camundongos , Receptor MT1 de Melatonina/metabolismo , Reprodução/fisiologia , Suínos
20.
J Pineal Res ; 66(3): e12550, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30597622

RESUMO

Female fertility irreversibly declines with aging, and this is primarily associated with the decreased quality and quantity of oocytes. To evaluate whether a long-term of melatonin treatment would improve the fertility of aged mice, different concentrations of melatonin (10-3 , 10-5 , 10-7  mol/L) were supplemented into drinking water. Melatonin treatments improved the litter sizes of mice at the age of 24 weeks. Mice treated with 10-5  mol/L melatonin had the largest litter size among other concentrations. At this optimal concentration, melatonin not only significantly increased the total number of oocytes but also their quality, having more oocytes with normal morphology that could generate more blastocyst after in vitro fertilization in melatonin (10-5  mol/L)-treated group than that in the controls. When these blastocysts were transferred to recipients, the litter size was also significantly larger in melatonin treated mice than that in controls. The increases in TAOC and SOD level and decreases in MDA were detected in ovaries and uterus from melatonin-treated mice compared to the controls. Melatonin reduced ROS level and maintained mitochondrial membrane potential in the oocytes cultured in vitro. Mechanistically studies revealed that the beneficial effects of melatonin on oocytes were mediated by MT1 receptor and AMPK pathway. Thereafter, MT1 knocking out (MT1-KO) were generated and shown significantly reduced number of oocytes and litter size. The expression of SIRT1, C-myc, and CHOP were downregulated in the ovary of MT1-KO mice, but SIRT1 and p-NF-kB protein level were elevated in response to disturbed redox balance. The results have convincingly proven that melatonin administration delays ovary aging and improves fertility in mice via MT1/AMPK pathway.


Assuntos
Envelhecimento/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Melatonina/farmacologia , Ovário/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/fisiologia , Animais , Feminino , Fertilidade/fisiologia , Camundongos , Camundongos Knockout , Ovário/metabolismo , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA