Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Am Chem Soc ; 146(14): 9819-9827, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546207

RESUMO

Iron-based phosphate cathode of Na4Fe3(PO4)2(P2O7) has been regarded as a low-cost and structurally stable cathode material for Na-ion batteries (NIBs). However, their practical application is greatly hindered by the insufficient electrochemical performance and limited energy density. Here, we report a new iron-based phosphate cathode of Na4.5Fe3.5(PO4)2.5(P2O7) with the intergrown heterostructure of the maricite-type NaFePO4 and orthorhombic Na4Fe3(PO4)2(P2O7) phases at a mole ratio of 0.5:1. Benefited from the increased composition ratio and the spontaneous activation of the maricite-type NaFePO4 phase, the as-prepared Na4.5Fe3.5(PO4)2.5(P2O7) composites deliver a reversible capacity over 130 mA h g-1 and energy density close to 400 W h kg-1, which is far beyond that of the single-phase Na4Fe3(PO4)2(P2O7) cathode (∼120 mA h g-1 and ∼350 W h kg-1). Moreover, the kg-level products from the scale-up synthesis demonstrate a stable cycling performance over 2000 times at 3 C in pouch cells. We believe that our findings could show the way forward the practical application of the iron-based phosphate cathodes for NIBs.

2.
Entropy (Basel) ; 25(9)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761648

RESUMO

We study the probability of an undetected error for general q-ary codes. We give upper and lower bounds on this quantity, by the Linear Programming and the Polynomial methods, as a function of the length, size, and minimum distance. Sharper bounds are obtained in the important special case of binary Hamming codes. Finally, several examples are given to illustrate the results of this paper.

3.
Angew Chem Int Ed Engl ; 62(13): e202217761, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719001

RESUMO

The rhombohedral sodium manganese hexacyanoferrate (MnHCF) only containing cheap Fe and Mn metals was regarded as a scalable, low-cost, and high-energy cathode material for Na-ion batteries. However, the unexpected Jahn-teller effect and significant phase transformation would cause Mn dissolution and anisotropic volume change, thus leading to capacity loss and structural instability. Here we report a simple room-temperature route to construct a magical Cox B skin on the surface of MnHCF. Benefited from the complete coverage and the buffer effect of Cox B layer, the modified MnHCF cathode exhibits suppressed Mn dissolution and reduced intergranular cracks inside particles, thereby demonstrating thousands-cycle level cycling lifespan. By comparing two key parameters in the real energy world, i.e., cost per kilowatt-hours and cost per cycle-life, our developed Cox B coated MnHCF cathode demonstrates more competitive application potential than the benchmarking LiFePO4 for Li-ion batteries.

4.
Soft Matter ; 16(1): 142-151, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31774100

RESUMO

The influence of hydrogen bonding on the self-assembly behaviors of Pluronic P123 micelles is experimentally and theoretically investigated by introducing three small molecules, i.e. propyl benzoate (PB), propyl paraben (PP) and propyl gallate (PG) into the aqueous solution. It is discovered that the number of phenolic hydroxyl groups and concentration of the tested small molecules exhibit a profound impact on the micellar morphology. Although all the small molecules increase the size and polydispersity of Pluronic micelles in a concentration-dependent manner, the micellar morphologies induced by them vary considerably as demonstrated by DLS and cryo-TEM measurement. PB, without phenolic hydroxyl, cannot bring about the morphological change of P123 micelles, while PP induces a series of morphological transitions from spheres to long worm-like micelles and then to unilamellar vesicles by increasing the PP content. Upon increasing the number of phenolic hydroxyls in small molecules, i.e. PG, the fusion of the intermicellar core takes place, resulting in the formation of large micelles and micellar clusters. A qualitative study by NMR reveals that the different locations of small molecules within the micelles are attributed to the balance of hydrogen bonding and hydrophobic interaction between small molecules and copolymers. In addition, molecular dynamics simulations (MDS) are performed to further confirm the experimental results and provide quantitative information on intermolecular interaction strength. It is supposed that the mechanism of micellar morphological transition mediated by small molecules is ascribed to the hydrogen bonding interactions with varying strengths between the PEO blocks and their phenolic hydroxyls, which governs their locations in micelles, affecting the free energies from different regions of micelles, and consequently leads to the varying micellar morphologies. This study deepens our understanding of the role of hydrgen bonding in the self-assembly behaviors of Pluronic micelles and provides an alternative strategy for manipulating the nanostructure of Pluronic micelles.

5.
Microb Cell Fact ; 19(1): 8, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931799

RESUMO

The authors of this article [1] wish to draw the readers' attention to their closely related paper, published in RSC Advances [2] which should have been cited in this article. The authors regret that there is unattributed overlap in text describing the construction of the plasmid coding for the biosynthetic pathway because of the commonly used research strategies between this article [1] and similar work presented in RSC Advances, although this does not affect the main scientific conclusion in this study.

6.
Langmuir ; 35(10): 3859-3868, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30776245

RESUMO

The extraction and recovery of low-concentration valuable metals from various complex aqueous solutions or industrial waste waters have attracted extensive interests in recent years. In our previous works, we suggested a novel technique called bubbling organic liquid membrane extraction by spreading and covering an organic extractant with extremely small volume on the surface of gas bubbles to form a layer of the gas bubble-supported organic liquid membrane for selective extraction and enrichment of low-concentration targets from dilute aqueous solutions. It was found that for successfully performing the bubbling organic liquid membrane extraction, a prerequisite is knowing how to control the formation of a stable organic liquid membrane covered on the surface of gas bubbles. However, once the organic extractant starts to spread on the surface of gas bubbles, the extraction chemical reaction at the interface between the organic extractant liquid membrane and the rare-earth aqueous solution will occur. In the present work, the spreading behavior of the organic extractant P507 on the surface of rare-earth aqueous solutions was investigated and was compared with the behaviors on the surface of deionized water. It was revealed that the spreading of the organic extractant P507 on the surface of aqueous solutions containing rare-earth ions was accelerated because of the occurrence of the chemical reactions at the gas-water interface. The difference in the spreading rate of organic extractant P507 liquid droplets on the surface of deionized water and on that of Er(III) aqueous solutions with an increase in the P507 concentration, the saponification degrees of the P507 extractant, and the preloading amount of Er(III) in the P507 extractant revealed that the chemical reaction at the interface between the spreading P507 thin liquid membrane and the Er(III) aqueous solution would result in the Marangoni convection along the interface, which is in favor of overcoming the resistance from the viscous force when the surface tension gradient replaces gravity as a dominant driving force for the spreading. The present work provides an experimental foundation toward understanding the effect of the interfacial chemical reaction on the spreading behavior of an organic oil droplet on the gas-water interface. It is beneficial for the development of our suggested new technique of bubbling organic liquid membrane extraction and to achieve a controllable generation of a stable gas bubble-supported organic liquid membrane for performing solvent extraction at large aqueous-to-oil phase ratios.

7.
Langmuir ; 35(13): 4548-4556, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30839220

RESUMO

Understanding the fundamentals of confined chemical reaction was an important subject in various heterogeneous physicochemical processes. Here, we investigated the orientation behavior of an amphiphilic ligand, the tri- n-octylphosphine oxide (TOPO), in a compressed monolayer at the air/water interface and its impact on the complexation reactivity of TOPO molecules with chromate ions at the interface. The analysis of sum frequency generation and polarization modulation infrared reflection absorption spectroscopy experiments combined with surface pressure measurements reveals a significant dependence of the adsorption rate and saturated concentration of chromate ions on the orientation of TOPO molecules during the increase of the surface pressure. In parallel, the analysis of molecular dynamics simulations indicates that the interaction energy between TOPO molecules and chromate ions is strongly sensitive to the orientation of TOPO molecules confined at the water/air interface. The present work provides a novel insight into the unique chemical reactivity of molecules in a confined microenvironment, and it provides a basis for further progresses in improving chemical reactivity and selectivity of molecules in a confined environment by regulating confinement of molecules.

8.
Soft Matter ; 15(21): 4346-4350, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31074480

RESUMO

Understanding of the microcosmic essence of the competitive adsorption of different ions at liquid/liquid interfaces is of crucial importance for the elucidation of the unique chemical reactivities or selectivities of ions in numerous heterogeneous chemical processes. However, the knowledge of the microscopic mechanism behind the competitive adsorption of ions at the liquid/liquid interface is lacking. Herein, the competitive adsorption of various inorganic salt anions at organic-aqueous two-phase interfaces has been investigated as compared to that of the CrO42- ions by total internal reflection UV-visible (TIR-UV) spectroscopy since CrO42- ions are detectable by UV-visible spectroscopy and have a relatively poor interface propensity as compared to other chaotropic ions. Experimental results indicate that the interface propensities of different salt anions to the organic/aqueous phase interface follow the Hofmeister series. Molecular dynamics simulations further provided molecular-level evidence for role of the Hofmeister series of ions in the competitive adsorption of salt anions at organic-aqueous two-phase interfaces; the present study provided the first-hand experimental evidence demonstrating the occurrence of the Hofmeister series effect at the organic/aqueous two-phase interfaces, influencing the competitive adsorption of different salt ions; moreover, it is expected to offer a basis for the development of new strategies for the regulation of the chemical reactivity and selectivity of ions at organic/aqueous phase interfaces by introduction of other ions for competitive adsorption.

9.
Microb Cell Fact ; 18(1): 39, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782155

RESUMO

Microbial fuel cell (MFC) is an environmentally friendly technology for electricity harvesting from a variety of substrates. Microorganisms used as catalysts in the anodic chamber, which are termed as electricigens, play a major role in the operation of MFCs. This review provides an introduction to the currently identified electricigens on their taxonomical groups and electricity producing abilities. The mechanism of electron transfer from electricigens to electrode is highlighted. The performances of pure culture and mixed communities are compared particularly. It has been proved that the electricity generation capacity and the ability to adapt to the complex environment of MFC systems constructed by pure microbial cultures are less than the systems constructed by miscellaneous consortia. However, pure cultures are useful to clarify the electron transfer mechanism at the microbiological level and further reduce the complexity of mixed communities. Future research trends of electricigens in MFCs should be focused on screening, domestication, modification and optimization of multi-strains to improve their electrochemical activities. Although the MFC techniques have been greatly advanced during the past few years, the present state of this technology still requires to be combined with other processes for cost reduction.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Biofilmes , Catálise , Eletricidade , Transporte de Elétrons
10.
Appl Microbiol Biotechnol ; 103(6): 2597-2608, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30719552

RESUMO

The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO2 or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.


Assuntos
Coenzimas/metabolismo , Escherichia coli/metabolismo , Hemiterpenos/biossíntese , Engenharia Metabólica , Propilenoglicóis/metabolismo , Vias Biossintéticas , Butadienos , Enzimas , Escherichia coli/genética , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Ácido Mevalônico/metabolismo , NADP/metabolismo , Oxirredução
11.
Langmuir ; 34(38): 11374-11383, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30180592

RESUMO

Understanding the essence of the specific salt effect on the enhancement of the transport of metal ions across the liquid/liquid interface during the process of solvent extraction is of crucial importance for the development of a new approach to extract and selectively separate various valuable metals from complex aqueous solutions. However, some abnormal experimental phenomena involved in the salt effect on the liquid/liquid solvent extraction could not be understood only from the conventional interpretation based on the salting-out ability of salt ions. The knowledge into the microscopic mechanism behind the specific salt effect was urgent. Herein, as an example, the effect of adding various salts on the extraction performance of rare earth ion Pr3+ using trioctylphosphine oxide (TOPO) as the organic extractant was investigated. It was revealed that the difference in the interface propensity of different salt anions enriched at the organic-aqueous two-phase interface played a crucial role in promoting the interaction of TOPO molecules with Pr3+ ions, despite the occurrence of the salting-out effect of those salt anions with the increase of their concentrations in aqueous solutions. The interfacial interaction mechanism obtained by molecular dynamics simulations revealed that both the interface propensity and the salting-out ability of the coexisting salt anions contributed to the enhancement in the extraction of Pr3+ into the TOPO organic phase. However, when the concentrations of coexisting salts in aqueous solutions were low enough, the extraction of Pr3+ was mainly dominated by the interface propensity of those added salt anions but not their salting-out ability. With the increase in the concentration of salts, the salting-out effect gradually became significant and, therefore, began to join with the interface propensity of salt anions to co-dominate the  transport of Pr3+ ions across the liquid/liquid interface. The present study highlights the microscopic nature of the salt effect on promoting the extraction of rare earth ions and suggests that the interaction of organic extractant molecules with rare earth ions at liquid/liquid interface was dependent not only upon the salting-out ability of the coexisting salt ions but also their interface propensity.

12.
Langmuir ; 34(44): 13155-13161, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346781

RESUMO

Adsorption, especially competitive adsorption of ions at the interfaces, governs a wealth of physicochemical processes. Understanding the mechanism behind these interfacial behaviors is crucial for developing novel strategies to intensify reactions or transfer processes. Herein, as an example, we found that in the case of liquid-liquid transport of V(V) and Cr(VI) ions, the competitive adsorption of V(V) and Cr(VI) ions against coexisting SO42- ions at the oil-water interface exhibits a significant impact on the selective separation behaviors of V(V) and Cr(VI) ions. The transport of Cr(VI) ions would be hindered by adding Na2SO4 into the aqueous solutions because of the competitive adsorption of SO42- ions at the interface being stronger than that of Cr(VI) ions, whereas the transport of V(V) ions would not be affected because of the stronger affinity of V(V) ions to the interfaces compared to that of SO42- ions. The present work provides new inspirations for developing efficient strategies to improve the separation efficiency of target ions with similar physic-chemical properties by regulating their adsorption behaviors at the interface. It is beneficial to get a deeper understanding into the microscopic nature of competitive adsorption behaviors of ions at interfaces from the interface-molecular level.

13.
Microb Cell Fact ; 17(1): 65, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712558

RESUMO

BACKGROUND: Lycopene is a terpenoid pigment that has diverse applications in the food and medicine industries. A prospective approach for lycopene production is by metabolic engineering in microbial hosts, such as Escherichia coli. Isopentenyl diphosphate isomerase (IDI, E.C. 5.3.3.2) is one of the rate-limiting enzymes in the lycopene biosynthetic pathway and one major target during metabolic engineering. The properties of IDIs differ depending on the sources, but under physiological conditions, IDIs are limited by low enzyme activity, short half-life and weak substrate affinity. Therefore, it is important to prepare an excellent IDI by protein engineering. RESULTS: Directed evolution strategy (error-prone PCR) was utilized to optimize the activity of Saccharomyces cerevisiae IDI. Using three rounds of error-prone PCR; screening the development of a lycopene-dependent color reaction; and combinatorial site-specific saturation mutagenesis, three activity-enhancing mutations were identified: L141H, Y195F, and W256C. L141H, located near the active pocket inside the tertiary structure of IDI, formed a hydrogen bond with nearby ß-phosphates of isopentenylpyrophosphate (IPP). Phe-195 and Cys-256 were nonpolar amino acids and located near the hydrophobic group of IPP, enlarging the hydrophobic scope, and the active pocket indirectly. Purified IDI was characterized and the result showed that the Km of mutant IDI decreased by 10% compared with Km of the parent IDI, and Kcat was 28% fold improved compared to that of the original IDI. Results of a fermentation experiment revealed that mutant IDI had a 1.8-fold increased lycopene production and a 2.1-fold increased yield capacity compared to wild-type IDI. CONCLUSION: We prepared an engineered variant of IDI with improved catalytic activity by combining random and site directed mutagenesis. The best mutants produced by this approach enhanced catalytic activity while also displaying improved stability in pH, enhanced thermostability and longer half-life. Importantly, the mutant IDI could play an important role in fed-batch fermentation, being an effective and attractive biocatalyst for the production of biochemicals.


Assuntos
Carotenoides/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Licopeno , Mutagênese Sítio-Dirigida
14.
Appl Microbiol Biotechnol ; 102(4): 1535-1544, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29264773

RESUMO

Sabinene is an important naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Up to now, this valuable terpene is commercially unavailable since there is no applicable manufacturing process. Microbial synthesis can be a promising route for sabinene production. In this review, we summarize knowledge about the metabolic pathway and key enzymes for sabinene biosynthesis. Recent advances that have been made in production of sabinene by microbial fermentation are highlighted. In these studies, researchers have identified the general synthetic pathway of sabinene from simple intermediate metabolites. Sabinene synthases of different origins were also cloned and characterized. Additionally, heterologous systems of the model microbes Escherichia coli and Saccharomyces cerevisiae were constructed to produce sabinene. This review also suggests new directions and attempts to gain some insights for achieving an industrial level production of sabinene. The combination of traditional molecular biology with new genome and proteome analysis tools will provide a better view of sabinene biosynthesis and a greater potential of microbial production.


Assuntos
Vias Biossintéticas , Escherichia coli/metabolismo , Monoterpenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Monoterpenos Bicíclicos , Escherichia coli/genética , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética
15.
Int J Mol Sci ; 20(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577498

RESUMO

The modification of the surface of silica gel to prepare hydrophilic chromatographic fillers has recently become a research interest. Most researchers have grafted natural sugar-containing polymers onto chromatographic surfaces. The disadvantage of this approach is that the packing structure is singular and the application scope is limited. In this paper, we explore the innovative technique of grafting a sugar-containing polymer, 2-gluconamidoethyl methacrylamide (GAEMA), onto the surface of silica gel by atom transfer radical polymerization (ATRP). The SiO2-g-GAEMA with ATRP reaction time was characterized by Fourier infrared analysis, Thermogravimetric analysis (TGA), and elemental analysis. As the reaction time lengthened, the amount of GAEMA grafted on the surface of the silica gel gradually increased. The GAEMA is rich in amide bonds and hydroxyl groups and is a typical hydrophilic chromatography filler. Finally, SiO2-g-GAEMA (reaction time = 24 h) was chosen as the stationary phase of the chromatographic packing and evaluated with four polar compounds (uracil, cytosine, guanosine, and cytidine). Compared with unmodified silica gel, modified silica gel produces sharper peaks and better separation efficiency. This novel packing material may have a potential for application with highly isomerized sugar mixtures.


Assuntos
Cromatografia , Polímeros , Sílica Gel , Acrilamidas/química , Cromatografia/métodos , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros/química , Sílica Gel/química , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
16.
BMC Biotechnol ; 17(1): 66, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789688

RESUMO

BACKGROUND: Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology. RESULTS: By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus, the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus and phloroglucinol synthase (PhlD) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with a yield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible maximum. CONCLUSIONS: In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from acetate was demonstrated. The system's performance suggests that in vitro synthesis of phloroglucinol has some advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from acetate, which could work as a versatile biosynthetic platform.


Assuntos
Acetatos/metabolismo , Acetobacter/enzimologia , Acetil-CoA Carboxilase/metabolismo , Biotecnologia/métodos , Floroglucinol/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cinética , Pseudomonas fluorescens/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
BMC Microbiol ; 17(1): 10, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28061812

RESUMO

BACKGROUND: Acetyl-CoA-derived chemicals are suitable for multiple applications in many industries. The bio-production of these chemicals has become imperative owing to the economic and environmental problems. However, acetate overflow is the major drawback for acetyl-CoA-derived chemicals production. Approaches for overcoming acetate overflow may be beneficial for the production of acetyl-CoA-derived chemicals. RESULTS: In this study, a transcriptional regulator iclR was knocked out in E.coli BL21(DE3) to overcome acetate overflow and improve the chemicals production. Two important acetyl-CoA-derived chemicals, phloroglucinol (PG) and 3-hydroxypropionate (3HP) were used to evaluate it. It is revealed that knockout of iclR significantly increased expressions of aceBAK operon. The cell yields and glucose utilization efficiencies were higher than those of control strains. The acetate concentrations were decreased by more than 50% and the productions of PG and 3HP were increased more than twice in iclR mutants. The effects of iclR knockout on cell physiology, cell metabolism and production of acetyl-CoA-derived chemicals were similar to those of arcA knockout in our previous study. However, the arcA-iclR double mutants couldn't gain higher productions of PG and 3HP. The mechanisms are unclear and needed to be resolved in future. CONCLUSIONS: Knockout of iclR significantly increased gene expression of aceBAK operon and concomitantly activated glyoxylate pathway. This genetic modification may be a good way to overcome acetate overflow, and improve the production of a wide range of acetyl-CoA-derived chemicals.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética , Deleção de Sequência/genética , Acetatos/metabolismo , Acetilcoenzima A/biossíntese , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Técnicas de Inativação de Genes , Glucose/metabolismo , Glioxilatos/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética , Óperon , Floroglucinol/metabolismo
18.
Crit Rev Biotechnol ; 37(7): 933-941, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28078904

RESUMO

3-Hydroxypropionate (3HP) is an attractive platform chemical, serving as a precursor to a variety of commodity chemicals like acrylate and acrylamide, as well as a monomer of a biodegradable plastic. To establish a sustainable way to produce these commercially important chemicals and materials, fermentative production of 3HP is widely investigated in recent years. It is reported that 3HP can be produced from several intermediates, such as glycerol, malonyl-CoA, and ß-alanine. Among all these biosynthetic routes, the malonyl-CoA pathway has some distinct advantages, including a broad feedstock spectrum, thermodynamic feasibility, and redox neutrality. To date, this pathway has been successfully constructed in various species including Escherichia coli, yeast and cyanobacteria, and optimized through carbon flux redirection, enzyme screening and engineering, and an increasing supply of energy and cofactors, resulting in significantly enhanced 3HP titer up to 40 g/L. These results show the feasibility of commercial manufacturing of 3HP and its derivatives in the future.


Assuntos
Malonil Coenzima A/metabolismo , Escherichia coli , Ácido Láctico , Oxirredução , Saccharomyces cerevisiae
19.
Microb Cell Fact ; 16(1): 227, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258595

RESUMO

BACKGROUND: Phloroglucinol is an important chemical which has been successfully produced by engineered Escherichia coli. However, the toxicity of phloroglucinol can enormously inhibit E. coli cell growth and viability, and the productivity is still too low and not economically feasible for industrial applications. Therefore, strain tolerance to toxic metabolites remains a key issue during the production of chemicals using biological processes. RESULTS: In the present work, we examined the impact of the native GroESL chaperone system with different overexpression levels on phloroglucinol tolerance and production in E. coli. The groESL gene was cloned into an expression vector, of which expression level was regulated by three different promoters (natural, tac and T7 promoter). Strain tolerance was evaluated employing viable cell counts and phloroglucinol production. In comparison with the control strain, all GroESL overexpressing strains showed good characteristics in cell viability and phloroglucinol synthesis. Strain which overexpressed GroESL under tac promoter was found to show the best tolerance in all of those tested, resulting in a 3.19-fold increase in viable cell numbers compared with control strain of agar-plate culture under the condition of 0.7 g/L phloroglucinol, and a 39.5% increase in phloroglucinol production under fed-batch fermentation. This engineered strain finally accumulated phloroglucinol up to 5.3 g/L in the fed-batch cultivation 10 h after induction, and the productivity was 0.53 g/L/h. To date, the highest phloroglucinol production was achieved in this work compared with the previous reports, which is promising to make the bioprocess feasible from the economical point. CONCLUSIONS: The data show that appropriate expression level of GroESL plays a critical role in improving phloroglucinol tolerance and production in E. coli, and maybe involve in controlling some aspects of the stress response system through upregulation of GroESL. GroESL overexpression is therefore a feasible and efficient approach for improvement of E. coli tolerance.


Assuntos
Proteínas de Bactérias/genética , Chaperoninas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Floroglucinol/metabolismo , Proteínas de Bactérias/metabolismo , Chaperoninas/metabolismo , Proteínas de Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Regiões Promotoras Genéticas
20.
Microb Cell Fact ; 16(1): 209, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162110

RESUMO

BACKGROUND: D-Lactate is a valued chemical which can be produced by some bacteria including Klebsiella pneumoniae. However, only a few studies have focused on K. pneumoniae for D-lactate production with a significant amount of by-products, which complicated the purification process and decreased the yield of D-lactate. RESULTS: Based on the redirection of carbon towards by-product formation, the effects of single-gene and multiple-gene deletions in K. pneumoniae on D-lactate production from glucose via acetolactate synthase (budB), acetate kinase (ackA), and alcohol dehydrogenase (adhE) were tested. Klebsiella pneumoniae mutants had different production behaviours. The accumulation of the main by-products was decreased in the mutants. The triple mutant strain had the most powerful ability to produce optically pure D-lactate from glucose, and was tested with xylose and arabinose as carbon sources. Fed-batch fermentation was also carried out under various aeration rates, and the strain accumulated 125.1 g/L D-lactate with a yield of 0.91 g/g glucose at 2.5 vvm. CONCLUSIONS: Knocking out by-product synthesis genes had a remarkable influence on the production and yield of D-lactate. This study demonstrated, for the first time, that K. pneumoniae has great potential to convert monosaccharides into D-lactate. The results provide new insights for industrial production of D-lactate by K. pneumoniae.


Assuntos
Glucose/metabolismo , Klebsiella pneumoniae/química , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA