Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
AAPS PharmSciTech ; 22(1): 17, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389197

RESUMO

In this study, the novel high-speed tablet film coating process in the continuous manufacturing was investigated. The influence of key process variables (inlet air flow rate, inlet air temperature, and suspension spray rate) were investigated using a Box-Behnken experimental design method. Statistical regression models were developed to predict the outlet air temperature and relative humidity, the coating efficiency, the tablet moisture content, and coating uniformity. The effects of the three key process variables were comprehensively investigated based on mathematical analysis, contour plots, and interaction plots. The results indicate that all the process responses are affected by changing the inlet air flow rate, temperature, and suspension spray rate. A design space (DS) in terms of failure probability was determined based on specifications for tablet moisture content (< 3.5%) and coating uniformity (tablet weight standard deviation < 4 mg for tablet weight of 200 mg) using Monte Carlo simulations. Independent experiments were carried out and successfully validated the robustness and accuracy of the determined DS for the investigated tablet film coating process. All the data were generated using an industrial pilot-scale novel high-speed tablet coating unit from a continuous manufacturing line. The work facilitates the quality by design implementation of continuous pharmaceutical manufacturing.


Assuntos
Composição de Medicamentos/métodos , Comprimidos , Modelos Estatísticos , Projetos Piloto , Temperatura
2.
AAPS PharmSciTech ; 23(1): 14, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34888739

RESUMO

This work presents a compact model for the equipment capability limit of a common configuration of pharmaceutical lyophilizers, a product chamber separated from the condenser by a duct and isolation valve, at a wide range of design parameters. The equipment capability limit is one of the most important characteristics determining the lyophilization design space for a particular product, container, and equipment combination. Experimental measurements of equipment capability are time-consuming and expensive, especially at the production scale. Numerical modeling using computational fluid dynamics may reduce the number of experiments and provide insights into the physics of the process with high resolution. The computational fluid dynamics (CFD) modeling has been used in this work to develop a compact model for lyophilizer equipment capability. This eliminates the need for end users to create a full CFD model of the equipment and process. Full CFD and compact model simulations for laboratory and pilot-scale lyophilizers have been compared with tunable diode laser absorption spectroscopy measurements of the water vapor mass flow during ice slab tests. The compact model results average deviation from the experimental data is within 10%, whereas the full CFD simulations are within 5%. The compact model is based on several key parameters which are the main characteristics of a lyophilizer affecting the equipment capability curve. These parameters are discussed, and their effect on the modeling results is shown.


Assuntos
Hidrodinâmica , Tecnologia Farmacêutica , Desenho de Equipamento , Liofilização , Análise Espectral
3.
AAPS PharmSciTech ; 22(8): 274, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773199

RESUMO

Freeze-drying is a deceptively complex operation requiring sophisticated design of a robust and efficient process that includes understanding and planning for heterogeneity across the batch and shifts in parameters due to vial or lyophilizer changes. A software tool has been designed to assist in process development and scale-up based on a model that includes consideration of the process heterogeneity. Two drug formulations were used to test the ability of the new tool to develop a freeze-drying cycle and correctly predict product temperatures and drying times. Model inputs were determined experimentally, and the primary drying heterogeneous freeze-drying model was used to design drying cycles that provided data to verify the accuracy of model-predicted product temperature and primary drying time. When model inputs were accurate, model-predicted primary drying times were within 0.1 to 15.9% of experimentally measured values, and product temperature accuracy was between 0.2 and 1.2°C for three vial locations, center, inner edge, and outer edge. However, for some drying cycles, differences in vial heat transfer coefficients due to changes in shelf and product temperature as well as altered product resistance due to product temperature-dependent microcollapse increased inaccuracy (up to 28.6% difference in primary drying time and 5.1°C difference in product temperature). This highlights the need for careful determination of experimental conditions used to calculate model inputs. In future efforts, full characterization of location- and shelf temperature-dependentKv as well as location- and product temperature-dependentRp will enhance the accuracy of the predictions by the model within the user-friendly software.


Assuntos
Dessecação , Laboratórios , Liofilização , Software , Tecnologia Farmacêutica , Temperatura
4.
Pharm Dev Technol ; 25(10): 1204-1215, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32808839

RESUMO

Continuous manufacturing of oral-dosage drug products is increasing the need for rigorous process understanding both from a process design and control perspective. The purpose of this study is to develop a methodology that analyzes the effects of upstream process parameters on continuous tablet compaction and then correlates associated upstream variables to the final tablet attributes (e.g. relative density and hardness). The impact of three process parameters (system throughput, blender speed, and compaction force) on tablet attributes is investigated using a full factorial experimental design. As expected, the compaction force was found to be the most significant process parameter. However, importantly, throughput was discovered to have a non-negligible impact which was previously unaccounted for. This impact is proposed to be related to differing levels of powder pre-compression. An empirical model for this relationship is regressed and incorporated into a flowsheet model. The flowsheet model is then used to develop an in silico design space which is compared favorably to that built from experiments. Moreover, in the future, the in silico design space based on the validated flowsheet model can provide better manufacturing flexibility and make control strategy development simpler.


Assuntos
Química Farmacêutica/métodos , Modelos Estatísticos , Modelos Teóricos , Tecnologia Farmacêutica/métodos , Simulação por Computador , Composição de Medicamentos/métodos , Dureza , Fenômenos Mecânicos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Pós , Pressão , Comprimidos
5.
Pharm Dev Technol ; 24(1): 105-117, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29336653

RESUMO

In this study, a novel three-compartmental population balance model (PBM) for a continuous twin screw wet granulation process is developed, combining the techniques of PBM and regression process modeling. The developed model links screw configuration, screw speed, and blend throughput with granule properties to predict the granule size distribution (GSD) and volume-average granule diameter. The granulator screw barrel was divided into three compartments along barrel length: wetting compartment, mixing compartment, and steady growth compartment. Different granulation mechanisms are assumed in each compartment. The proposed model therefore considers spatial heterogeneity, improving model prediction accuracy. An industrial data set containing 14 experiments is applied for model development. Three validation experiments show that the three-compartmental PBM can accurately predict granule diameter and size distribution at randomly selected operating conditions. Sixteen combinations of aggregation and breakage kernels are investigated in predicting the experimental GSD to best judge the granulation mechanism. The three-compartmental model is compared with a one-compartmental model in predicting granule diameter at different experimental conditions to demonstrate its advantage. The influence of the screw configuration, screw speed and blend throughput on the volume-average granule diameter is analyzed based on the developed model.


Assuntos
Química Farmacêutica/métodos , Modelos Teóricos , Tecnologia Farmacêutica/métodos , Tamanho da Partícula , Reprodutibilidade dos Testes
6.
AAPS PharmSciTech ; 20(5): 209, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31161386

RESUMO

A tablet film coating and drying process was assessed by an experimentally validated thermodynamic balance model. Mass conservation equations were derived for the process air and the aqueous coating solution. Thermodynamic behavior of the solution was described by evaporation at the tablet surface and penetration into the tablet. Energy balance equations including heat loss to the atmosphere were coupled to the mass conservation equation. Experimental data using the ConsiGma™ coater (GEA, Belgium) were used for both parameter estimation and model validation. The results showed the proposed model can investigate primitive outlet variables and further internal variables representing evaporation and penetration. A sensitivity analysis revealed that evaporation depended more on the input parameters while penetration hinges on the tablet properties, particularly on the tablet volume affecting the tablet porosity.


Assuntos
Química Farmacêutica/métodos , Dessecação/métodos , Comprimidos com Revestimento Entérico/química , Cinética , Porosidade , Água/química
7.
Pharm Dev Technol ; 23(10): 1097-1107, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29304722

RESUMO

Continuous manufacturing techniques are increasingly being adopted in the pharmaceutical industry and powder blending is a key operation for solid-dosage tablets. A modeling methodology involving axial and radial tanks-in-series flowsheet models is developed to describe the residence time distribution (RTD) and blend uniformity of a commercial powder blending system. Process data for a six-component formulation processed in a continuous direct compression line (GEA Pharma Systems) is used to test the methodology. Impulse tests were used to generate experimental RTDs which are used along with parameter estimation to determine the number of axial tanks in the flowsheet. The weighted residual from the parameter estimation was less than the χ2 value at a 95% confidence indicating a good fit between the model and measured data. In-silico impulse tests showed the tanks-in-series modeling methodology could successfully describe the RTD behavior of the blenders along with blend uniformity through the use of radial tanks. The simulation output for both impulse weight percentage and blend uniformity were within the experimentally observed variance.


Assuntos
Química Farmacêutica/métodos , Simulação por Computador , Modelos Químicos , Força Compressiva , Pós
8.
Biotechnol J ; 19(2): e2300384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403465

RESUMO

A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeast Yarrowia lipolytica and extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high-value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two-phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three-phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kL a). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward-pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton-type) provided advantageous oil phase homogeneity and similar estimated kL a values with reduced power. These results show good agreement with the experimental mixing and kL a data.


Assuntos
Reatores Biológicos , Hidrodinâmica , Animais , Fermentação
9.
Int J Pharm ; 585: 119473, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32473373

RESUMO

In this work, the manufacturing process of a complex liposomal amphotericin B (AmB) product was optimized using quality by design (QbD) approach. A comprehensive QbD-based process understanding and design space (DS) to the critical process parameters (CPPs) is essential to the drug development and consistent quality control. The process was based on the acid-aided formation of drug-lipid complexes in a methanol-chloroform mixture (step I) followed by spray drying (step II), hydration and liposome formation by microfluidization (step III), and lyophilization (step IV). Firstly, the risk assessment was conducted to identify the critical process parameters among the four key steps. Nine CPPs and five CQAs (API Monomer identity (absorbance main peak at 321 nm), API Aggregation identity (absorbance peak ratio, OD 415 nm/321 nm), particle size, in-vitro toxicity, and the cake quality) were determined based on their severity and occurrences with their contribution to the quality target product profile (QTPP). Based on the risk assessment results, the final screening design of experiments (DoE) was developed using fractional factorial design. Secondly, the empirical equation was developed for each CQA based on experimental data. The impact of CPPs on the CQAs was analyzed using the coefficient plot and contour plot. In addition to the effect of individual formulation parameters and process parameters, the effects of the four key separate steps were also evaluated and compared. In general, the curing temperature during microfluidization has been identified as the most significant CPP. Finally, design space exploration was carried out to demonstrate how the critical process parameters can be varied to consistently produce a drug product with desired characteristics. The design space size increased at the higher value of the curing temperature, the API to phospholipid ratio (API:PL), and the lower value of the DSPG to phospholipid ratio (PG:PL) and aspirator rate.


Assuntos
Anfotericina B/administração & dosagem , Química Farmacêutica/métodos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Clorofórmio/química , Liofilização/métodos , Metanol/química , Controle de Qualidade , Tecnologia Farmacêutica
10.
Int J Pharm ; 525(1): 249-263, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28450171

RESUMO

In this study, the influence of key process variables (screw speed, throughput and liquid to solid (L/S) ratio) of a continuous twin screw wet granulation (TSWG) was investigated using a central composite face-centered (CCF) experimental design method. Regression models were developed to predict the process responses (motor torque, granule residence time), granule properties (size distribution, volume average diameter, yield, relative width, flowability) and tablet properties (tensile strength). The effects of the three key process variables were analyzed via contour and interaction plots. The experimental results have demonstrated that all the process responses, granule properties and tablet properties are influenced by changing the screw speed, throughput and L/S ratio. The TSWG process was optimized to produce granules with specific volume average diameter of 150µm and the yield of 95% based on the developed regression models. A design space (DS) was built based on volume average granule diameter between 90 and 200µm and the granule yield larger than 75% with a failure probability analysis using Monte Carlo simulations. Validation experiments successfully validated the robustness and accuracy of the DS generated using the CCF experimental design in optimizing a continuous TSWG process.


Assuntos
Composição de Medicamentos/métodos , Comprimidos , Tamanho da Partícula , Resistência à Tração
11.
Int J Pharm ; 475(1-2): 256-69, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25181553

RESUMO

In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately.


Assuntos
Modelos Teóricos , Tecnologia Farmacêutica/métodos , Simulação por Computador , Hidrodinâmica , Cinética , Tamanho da Partícula , Molhabilidade
12.
Int J Pharm ; 468(1-2): 223-33, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24732033

RESUMO

In this work, one-dimensional population balance models (PBMs) have been developed to model a pulsed top-spray fluidized bed granulation. The developed PBMs have linked the key binder solution spray operating factors of the binder spray rate, atomizing air pressure and pulsed frequency of spray with the granule properties to predict granule growth behaviour in the pulsed spray fluidized bed granulation process at different operating conditions with accuracy. A multi-stage open optimal control strategy based on the developed PBMs was proposed to reduce the model mismatch, in which through adjusting the trajectory of the evolution of the granule size distribution at predefined sample intervals, to determine the optimal operating variables related to the binder spray including the spray rate of binding liquid, atomizing air pressure and pulsed frequency of spray. The effectiveness of the proposed modelling and multi-stage open optimal control strategies has been validated by experimental and simulation tests.


Assuntos
Celulose/química , Excipientes/química , Derivados da Hipromelose/química , Modelos Químicos , Tecnologia Farmacêutica/métodos , Aerossóis , Pressão do Ar , Química Farmacêutica , Simulação por Computador , Tamanho da Partícula , Pós , Reprodutibilidade dos Testes
13.
Int J Pharm ; 448(2): 329-38, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23583710

RESUMO

In this work, the influence factors of pulsed frequency, binder spray rate and atomisation pressure of a top-spray fluidised bed granulation process were studied using the Box-Behnken experimental design method. Different mathematical models were developed to predict the mean size of granules, yield, relative width of granule distribution, Hausner ratio and final granule moisture content. The study has supported the theory that the granule size can be controlled through the liquid feed pulsing. However, care has to be taken when the pulsed frequency is chosen for controlling the granule size due to the nonlinear quadratic relation in the regression model. The design space of the ranges of operating parameters has been determined based on constraints of the mean size of granules and granule yield. High degree of prediction obtained from validation experiments has shown the reliability and effectiveness of using the Box-Behnken experimental design method to study a fluidised bed granulation process.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Dinâmica não Linear , Tamanho da Partícula , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA