Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 46(21): 5356-5359, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724474

RESUMO

A hybrid patterned sapphire substrate (HPSS) aiming to achieve high-quality Al(Ga)N epilayers for the development of GaN-based ultraviolet light-emitting diodes (UV LEDs) has been prepared. The high-resolution X-ray diffraction measurements reveal that the Al(Ga)N epilayers grown on a HPSS and conventional patterned sapphire substrate (CPSS) have similar structural quality. More importantly, benefiting from the larger refractive index contrast between the patterned silica array and sapphire, the photons can escape from the hybrid substrate with an improved transmittance in the UV band. As a result, in comparison with the UV LEDs grown on the CPSS, the LEDs grown on the HPSS exhibit a significantly enhanced light output power by 14.5% and more than 22.9% higher peak external quantum efficiency, owing to the boost of the light extraction efficiency from the adoption of the HPSS which can be used as a promising substrate to realize high-efficiency and high-power UV LEDs of the future.

2.
BMC Plant Biol ; 19(1): 105, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885124

RESUMO

BACKGROUND: NCA1 (NO CATALASE ACTIVITY 1) was recently identified in Arabidopsis as a chaperone protein to regulate catalase (CAT) activity through maintaining the folding of CAT. The gene exists mainly in higher plants; some plants, such as Arabidopsis, contain only one NCA1 gene, whereas some others such as rice harbor two copies. It is not yet understood whether and how both isoforms have functioned to regulate CAT activity in those two-copy-containing plant species. RESULTS: In this study, we first noticed that the spatiotemporal expression patterns of NCA1a and NCA1b were very similar in rice plants. Subsequent BiFC and yeast three-hybrid experiments demonstrated that both NCA1a and NCA1b show mutually exclusive, rather than simultaneous, interaction with CAT. For a further functional analysis, nca1a and nca1b single mutants or double mutants of rice were generated by CRISPR/Cas9. Analysis on these mutants under both normal and salinity stress conditions found that, as compared with WT, either nca1a or nca1b single mutant showed no difference at phenotypes and CAT activities, whereas the double mutants constantly displayed very low CAT activity (about 5%) and serious lesion phenotypes. CONCLUSIONS: These results suggest that NCA1a and NCA1b show mutually exclusive interaction with CAT to regulate CAT activity in a functionally-redundant manner in rice.


Assuntos
Catalase/metabolismo , Oryza/enzimologia , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino
3.
Nanotechnology ; 27(34): 34LT01, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27421108

RESUMO

2D layered SnS2 nanosheets have attracted increasing research interest due to their highly anisotropic structural, electrical, optical, and mechanical properties. Here, through mechanical exfoliation, few-layer SnS2 was obtained from as-synthesized many-layered bulk SnS2. Micro-characterization and Raman study demonstrate the hexagonal symmetry structure of the nanosheets so fabricated. The energy band structures of both SnS2 bulk and monolayer were investigated comparatively. A highly photosensitive field effect transistor based on the obtained few-layer SnS2 nanosheets was fabricated, which shows a high I photo/I dark ratio of 10(3), and keeps the responsivity and external quantum efficiency (EQE) at a realistic level of 8.5 A W(-1) and 1.2 × 10(3)% respectively. This 2D structured high on/off ratio photosensitive field effect device may find promising potential applications in functional electronic/optoelectronic devices or systems.

4.
Bioelectromagnetics ; 36(1): 10-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25328088

RESUMO

Realistic anatomical modeling is essential in analyzing human exposure to electromagnetic fields. Infants have significant physical and anatomical differences compared with other age groups. However, few realistic infant models are available. In this work, we developed one 12-month-old male whole body model and one 17-month-old male head model from magnetic resonance images. The whole body and head models contained 28 and 30 tissues, respectively, at spatial resolution of 1 mm × 1 mm × 1 mm. Fewer identified tissues in the whole body model were a result of the low original image quality induced by the fast imaging sequence. The anatomical and physical parameters of the models were validated against findings in published literature (e.g., a maximum deviation as 18% in tissue mass was observed compared with the data from International Commission on Radiological Protection). Several typical exposure scenarios were realized for numerical simulation. Dosimetric comparison with various adult and child anatomical models was conducted. Significant differences in the physical and anatomical features between adult and child models demonstrated the importance of creating realistic infant models. Current safety guidelines for infant exposure to radiofrequency electromagnetic fields may not be conservative.


Assuntos
Campos Eletromagnéticos , Modelos Anatômicos , Adulto , Simulação por Computador , Cabeça/anatomia & histologia , Cabeça/fisiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcomputadores , Radiometria/instrumentação
5.
Micromachines (Basel) ; 11(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516889

RESUMO

The non-centrosymmetricity of III-nitride wurtzite crystals enables metal or nitrogen polarity with dramatically different surface energies and optical properties. In this work, III-polar and N-polar nanostructured ultraviolet multiple quantum wells (UV-MQWs) were fabricated by nanosphere lithography and reactive ion etching. The influence of KOH etching and rapid thermal annealing treatments on the luminescence behaviors were carefully investigated, showing a maximum enhancement factor of 2.4 in emission intensity for III-polar nanopillars, but no significant improvement for N-polar nanopillars. The discrepancy in optical behaviors between III- and N-polar nanopillar MQWs stems from carrier localization in III-polar surface, as indium compositional inhomogeneity is discovered by cathodoluminescence mapping, and a defect-insensitive emission property is observed. Therefore, non-radiative recombination centers such as threading dislocations or point defects are unlikely to influence the optical property even after post-fabrication surface treatment. This work lays solid foundation for future study on the effects of surface treatment on III- and N-polar nanostructured light-emitting-diodes and provides a promising route for the design of nanostructure photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA