RESUMO
Histone acetylation that controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs), as one of major epigenetic mechanisms controls transcription and its abnormal regulation was implicated in various aspects of cancer. However, the comprehensive understanding of HDACs and HATs in cancer is still lacking. Systematically analysis through 33 cancer types based on next-generation sequence data reveals heterogeneous expression pattern of HDACs and HATs across different cancer types. In particular, HDAC10 and HDAC6 show significant downregulation in most cancers. Principal components analysis (PCA) of pan-cancer reveals significant difference of HDACs and HATs between normal tissues and normal tissue adjacent to the tumor. The abnormal expression of HDACs and HATs was partially due to CNV and DNA methylation in multiple types of cancer. Prognostic significance (AUC reached 0.736) of HDACs and HATs demonstrates a five-gene signature including KAT2A, HAT1, KAT5, CREBBP and SIRT1 in KIRC. Analysis of NCI-60 drug database reveals the cytotoxic effect of several drugs are associated with dysregulated expression of HDACs and HATs. Analysis of immune infiltration and immunotherapy reveals that KAT2B and HDAC9 are associated with immune infiltration and immunotherapy. Our analysis provided comprehensive understanding of the regulation and implication of HDACs and HATs in pan-cancer. These findings provide novel evidence for biological investigating potential individual HDACs and HATs in the development and therapy of cancer in the future.
Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Transferases/metabolismo , Transferases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Histona Desacetilases/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/uso terapêuticoRESUMO
The 3'-untranslated region (3'-UTR) of PD-L1 is significantly longer than the coding sequences (CDSs). However, its role and regulators have been little studied. We deleted whole 3'-UTR region by CRISPR-Cas9. Prognostic analysis was performed using online tools. Immune infiltration analysis was performed using the Timer and Xcell packages. Immunotherapy response prediction and Cox regression was performed using the R software. MicroRNA network analysis was conducted by the Cytoscape software. The level of PD-L1 was significantly and dramatically up-regulated in cells after deleting the 3'-UTR. Additionally, we discovered a panel of 43 RNA-binding proteins (RBPs) whose expression correlates with PD-L1 in the majority of cancer cell lines and tumor tissues. Among these RBPs, PARP14 is widely associated with immune checkpoints, the tumor microenvironment, and immune-infiltrating cells in various cancer types. We also identified 38 microRNAs whose individual expressions are associated with PD-L1 across different cancers. Notably, miR-3139, miR-4761, and miR-15a-5p showed significant associations with PD-L1 in most cancer types. Furthermore, we revealed 21 m6A regulators that strongly correlate with PD-L1. Importantly, by combining the identified RBP and m6A regulators, we established an immune signature consisting of RBMS1, QKI, ZC3HAV1, and RBM38. This signature can be used to predict the responsiveness of cancer patients to immune checkpoint blockade treatment. We demonstrated the critical role of the 3'-UTR in the regulation of PD-L1 and identified a significant number of potential PD-L1 regulators across various types of cancer. The biomarker signature generated from our findings shows promise in predicting patient prognosis. However, further biological investigation is necessary to explore the potential of these PD-L1 regulators.
Assuntos
MicroRNAs , Neoplasias , Humanos , Antígeno B7-H1/genética , MicroRNAs/genética , Neoplasias/genética , Regiões 3' não Traduzidas , Linhagem Celular , Microambiente Tumoral/genética , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA/genéticaRESUMO
Background: Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Lung adenocarcinoma (LUAD), the main subtype of NSCLC, has a poor prognosis. In recent years, circadian rhythm (CR)-related genes (CRRGs) have demonstrated associations with tumor occurrence and development, but the relationship between CRRGs and LUAD is not clear. Because of the correlation between CRRGs and tumors, we have reason to believe that CRRGs will become an important prognostic indicator for LUAD and guide the treatment of LUAD prognosis. Methods: Based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we explored the biological function and immune cell infiltration of LUAD in different CR clusters and quantified CR genes using principal component analysis (PCA). Then, we built a CR scoring system (CRscore) to explore the relationship between CRRGs and LUAD prognosis. Results: Patients were divided into three clusters (A, B, and C). Biological characteristics, such as survival, immune cell infiltration, and gene enrichment, were significantly different among the three clusters (P<0.001). We then established the usefulness of the CR score, which could probably predict the prognosis of LUAD. Specifically, patients with a high CR score had a better prognosis and were more sensitive to chemotherapy than those with a low CR score. Conclusions: It is possible to use CRRGs to assess the prognosis of patients with LUAD. Quantification of CR using the CRscore tool in patients with LUAD maybe help to guide personalized cancer immunotherapy strategies in the future. Thus, the CRscore may be a prognostic tool for LUAD.