Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 216(3): 108107, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906499

RESUMO

Atomic force microscope enables ultra-precision imaging of living cells. However, atomic force microscope imaging is a complex and time-consuming process. The obtained images of living cells usually have low resolution and are easily influenced by noise leading to unsatisfactory imaging quality, obstructing the research and analysis based on cell images. Herein, an adaptive attention image reconstruction network based on residual encoder-decoder was proposed, through the combination of deep learning technology and atomic force microscope imaging supporting high-quality cell image acquisition. Compared with other learning-based methods, the proposed network showed higher peak signal-to-noise ratio, higher structural similarity and better image reconstruction performances. In addition, the cell images reconstructed by each method were used for cell recognition, and the cell images reconstructed by the proposed network had the highest cell recognition rate. The proposed network has brought insights into the atomic force microscope-based imaging of living cells and cell image reconstruction, which is of great significance in biological and medical research.

2.
Curr Issues Mol Biol ; 46(3): 2576-2597, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534780

RESUMO

The rpl1001 gene encodes 60S ribosomal protein L10, which is involved in intracellular protein synthesis and cell growth. However, it is not yet known whether it is involved in the regulation of cell mitosis dynamics. This study focuses on the growth, spore production, cell morphology, the dynamics of microtubules, chromosomes, actin, myosin, and mitochondria of fission yeast (Schizosaccharomyces pombe) to investigate the impact of rpl1001 deletion on cell mitosis. RNA-Seq and bioinformatics analyses were also used to reveal key genes, such as hsp16, mfm1 and isp3, and proteasome pathways. The results showed that rpl1001 deletion resulted in slow cell growth, abnormal spore production, altered cell morphology, and abnormal microtubule number and length during interphase. The cell dynamics of the rpl1001Δ strain showed that the formation of a monopolar spindle leads to abnormal chromosome segregation with increased rate of spindle elongation in anaphase of mitosis, decreased total time of division, prolonged formation time of actin and myosin loops, and increased expression of mitochondrial proteins. Analysis of the RNA-Seq sequencing results showed that the proteasome pathway, up-regulation of isp3, and down-regulation of mfm1 and mfm2 in the rpl1001Δ strain were the main factors underpinning the increased number of spore production. Also, in the rpl1001Δ strain, down-regulation of dis1 caused the abnormal microtubule and chromosome dynamics, and down-regulation of hsp16 and pgk1 were the key genes affecting the delay of actin ring and myosin ring formation. This study reveals the effect and molecular mechanism of rpl1001 gene deletion on cell division, which provides the scientific basis for further clarifying the function of the Rpl1001 protein in cell division.

3.
Eur J Neurosci ; 59(7): 1428-1440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151046

RESUMO

Methamphetamine use disorder (MAUD) can substantially jeopardize public security due to its high-risk social psychology and behaviour. Given that the dopamine reward system is intimately correlated with MAUD, we investigated the association of single nucleotide polymorphisms (SNPs), as well as methylation status of dopamine receptor type 4 (DRD4), catechol-O-methyltransferase (COMT) genes, and paranoid and motor-impulsive symptoms in MAUD patients. A total of 189 MAUD patients participated in our study. Peripheral blood samples were used to detect 3 SNPs and 35 CpG units of methylation in the DRD4 gene promoter region and 5 SNPs and 39 CpG units in the COMT gene. MAUD patients with the DRD4 rs1800955 C allele have a lower percentage of paranoid symptoms than those with the rs1800955 TT allele. Individuals with paranoid symptoms exhibited a reduced methylation degree at a particular DRD4 CpG2.3 unit. The interaction of the DRD4 rs1800955 C allele and the reduced DRD4CpG2.3 methylation degree were associated with a lower occurrence of paranoid symptoms. Meanwhile, those with the COMT rs4818 CC allele had lower motor-impulsivity scores in MAUD patients but greater COMT methylation levels in the promoter region and methylation degree at the COMT CpG 51.52 unit. Therefore, based only on the COMT rs4818 CC polymorphism, there was a negative correlation between COMT methylation and motor-impulsive scores. Our preliminary results provide a clue that the combination of SNP genotype and methylation status of the DRD4 and COMT genes serve as biological indicators for the prevalence of relatively high-risk psychotic symptoms in MAUD patients.


Assuntos
Metanfetamina , Polimorfismo de Nucleotídeo Único , Humanos , Catecol O-Metiltransferase/genética , Dopamina , Metanfetamina/efeitos adversos , Genótipo , Metilação
4.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764014

RESUMO

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Assuntos
Adjuvantes Imunológicos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Ovalbumina , Probióticos , Animais , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Probióticos/farmacologia , Melanoma Experimental/imunologia , Feminino , Células Dendríticas/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Linfócitos T CD4-Positivos/imunologia
5.
Pharmacol Res ; 189: 106682, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736970

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is the main cause of increasing postischemic heart failure and currently there is no definite treatment for myocardial I/R injury. It has been suggested that oxidative stress-induced mitochondrial dysfunction plays an important role in the pathological development of myocardial I/R. In this study, Yiqi Huoxue (YQHX) prescription, as a kind of Chinese herbal formula, was developed and shown to alleviate I/R injury. Network analysis combined with ultrahigh-performance liquid chromatography-high resolution mass spectrometry expounded the active components of YQHX and revealed the mitophagy-regulation mechanism of YQHX treating I/R injury. In vivo experiments confirmed YQHX significantly alleviated I/R myocardial injury and relieved oxidative stress. In vitro experiments validated that YQHX could relieve hypoxia/reoxygenation injury and attenuate oxidative stress via improving the structure and function of mitochondria, which was strongly related to regulating mitophagy. In summary, this study demonstrated that YQHX, which could alleviate I/R injury via targeting mitophagy, might be a potential therapeutic strategy for myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Mitofagia , Miocárdio/patologia , Estresse Oxidativo , Mitocôndrias/patologia
6.
Environ Res ; 234: 116469, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394173

RESUMO

Promoting ecological conservation and high-quality development in the Yellow River basin is an important objective in China's 14th Five-Year Plan. Understanding the spatio-temporal evolution of and factors affecting the resources and environmental carrying capacity (RECC) of the urban agglomerations is critical for boosting high-quality green-oriented development. We first combined the Driver-Pressure-State-Impact-Response (DPSIR) framework and the improved Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model to evaluate the RECC of Shandong Peninsula urban agglomeration in 2000, 2010 and 2020; we then used trend analysis and spatial autocorrelation analysis to understand the spatio-temporal evolution and distribution pattern of RECC. Furthermore, we employed Geodetector to detect the influencing factors and classified the urban agglomeration into six zones based on the weighted Voronoi diagram of RECC as well as specific conditions of the study area. The results show that the RECC of Shandong Peninsula urban agglomeration increased consistently over time, from 0.3887 in 2000 to 0.4952 in 2010 and 0.6097 in 2020, respectively. Geographically, RECC decreased gradually from the northeast coast to the southwest inland. Globally, only in 2010 the RECC presented a significant spatial positive correlation, and that in the other years were not significant. The high-high cluster was mainly located in Weifang, while the low-low cluster in Jining. Furthermore, our study reveals three key factors-advancement of industrial structure, resident consumption level, and water consumption per ten thousand yuan of industrial added value-that affected the distribution of RECC. Other factors, including the interactions between residents' consumption level and environmental regulation, residents' consumption level and advancement of industrial structure, as well as between the proportion of R&D expenditure in GDP and resident consumption level also played important roles resulting in the variation of RECC among different cities within the urban agglomeration. Accordingly, we proposed suggestions for achieving high-quality development for different zones.


Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Econômico , Cidades , Análise Espacial , Indústrias , China , Rios , Urbanização
7.
J Nanobiotechnology ; 21(1): 68, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849981

RESUMO

Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
8.
Appl Opt ; 62(11): 2784-2791, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133119

RESUMO

Laboratory nanocomputed tomography (nano-CT), which can provide a spatial resolution of up to 100 nm, has been widely used due to its volume advantage. However, the drift of the x-ray source focal spot and the thermal expansion of the mechanical system can cause projection drift during long-time scanning. The three-dimensional result reconstructed from the drifted projections contains severe drift artifacts, which reduce the spatial resolution of nano-CT. Registering the drifted projections using rapidly acquired sparse projections is one of the mainstream correction methods, but the high noise and contrast differences of projections in nano-CT affect the correction effectiveness of existing methods. Herein, we propose a rough-to-refined projection registration method, which fully combines the information of the features in the gray and frequency domains of the projections. Simulation data show that the drift estimation accuracy of the proposed method is improved by 5× and 16× compared with the mainstream random sample consensus and locality preserving matching based on features. The proposed method can effectively improve the imaging quality of nano-CT.

9.
Appl Environ Microbiol ; 88(6): e0241321, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080909

RESUMO

Recent progress indicates that the gut microbiota plays important role in regulating the host's glucose homeostasis. However, the mechanisms remain unclear. Here, we reported that one integral member of the murine gut microbiota, the protozoan Tritrichomonas musculis could drive the host's glucose metabolic imbalance. Using metabolomics analysis and in vivo assays, we found that mechanistically this protozoan influences the host glucose metabolism by facilitating the production of a significant amount of free choline. Free choline could be converted sequentially by choline-utilizing bacteria and then the host to a final product trimethylamine N-oxide, which promoted hepatic gluconeogenesis. Together, our data reveal a previously underappreciated gut eukaryotic microorganism by working together with other members of microbiota to influence the host's metabolism. Our study underscores the importance and prevalence of metabolic interactions between the gut microbiota and the host in modulating the host's metabolic health. IMPORTANCE Blood glucose levels are important for human health and can be influenced by gut microbes. However, its mechanism of action was previously unknown. In this study, researchers identify a unique member of the gut microbes in mice that can influence glucose metabolism by promoting the host's ability to synthesis glucose by using nonglucose materials. This is because of its ability to generate the essential nutrient choline, and choline, aided by other gut bacteria and the host, is converted to trimethylamine N-oxide, which promotes glucose production. These studies show how gut microbes promote metabolic dysfunction and suggest novel approaches for treating patients with blood glucose abnormality.


Assuntos
Colina , Microbioma Gastrointestinal , Animais , Colina/metabolismo , Microbioma Gastrointestinal/fisiologia , Glucose , Homeostase , Humanos , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
Opt Express ; 30(14): 25034-25049, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237043

RESUMO

Nanocomputed tomography (nanoCT) is an effective tool for the nondestructive observation of 3D structures of nanomaterials; however, it requires additional correction phantom to reduce artifacts induced by the focal drift of the X-ray source and mechanical thermal expansion. Drift correction without a correction phantom typically uses rapidly acquired sparse projections to align the original projections. The noise and brightness difference in the projections limit the accuracy of existing feature-based methods such as locality preserving matching (LPM) and random sample consensus (RANSAC). Herein, a rough-to-refined correction framework based on global mixed evaluation (GME) is proposed for precise drift estimation. First, a new evaluation criterion for projection alignment, named GME, which comprises the structural similarity (SSIM) index and average phase difference (APD), is designed. Subsequently, an accurate projection alignment is achieved to estimate the drift by optimizing the GME within the proposed correction framework based on the rough-to-refined outlier elimination strategy. The simulated 2D projection alignment experiments show that the accuracy of the GME is improved by 14× and 12× than that of the mainstream feature-based methods LPM and RANSAC, respectively. The proposed method is validated through actual 3D imaging experiments.

11.
Cancer Cell Int ; 22(1): 417, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572921

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive malignancies without effective targeted therapies. MUC1 has emerged as a potential common target for cancer therapy because it is overexpressed in a variety of different cancers including the majority of pancreatic cancer. However, there are still no approved monoclonal antibody drugs targeting MUC1 have been reported. Recently, we generated a humanized MUC1 antibody (HzMUC1) specific to the interaction region between MUC1-N and MUC1-C. In this study, we generated the antibody drug conjugate (ADC) by conjugating HzMUC1 with monomethyl auristatin (MMAE), and examined the efficacy of HzMUC1-MMAE against the MUC1-positive pancreatic cancer in vitro and in vivo. METHODS: Western blot and immunoprecipitation were used to detect MUC1 in pancreatic cancer cells. MUC1 localization in pancreatic cancer cells was determined by confocal microscopy. HzMUC1 was conjugated with the monomethyl auristatin (MMAE), generating the HzMUC1-MMAE ADC. Colony formation assay and flow cytometry were used to assess the effects of the HzMUC1-MMAE cell viability, cell cycle progression and apoptosis. Capan-2 and CFPAC-1 xenograft model were used to test the efficacy of HzMUC1-MMAE against pancreatic cancer. RESULTS: HzMUC1 antibody binds to MUC1 on the cell surface of pancreatic cancer cells. HzMUC1-MMAE significantly inhibited cell growth by inducing G2/M cell cycle arrest and apoptosis in pancreatic cancer cells. Importantly, HzMUC1-MMAE significantly reduced the growth of pancreatic xenograft tumors by inhibiting cell proliferation and enhancing cell death. CONCLUSION: Our results indicate that HzMUC1-ADC is a promising novel targeted therapy for pancreatic cancer. HzMUC1-ADC should also be an effective drug for the treatment of different MUC1-positive cancers.

12.
Pharmacol Res ; 185: 106515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265555

RESUMO

Long-term elevated blood pressure will increase the cardiac load and lead to myocardial fibrosis (MF). A variety of pathological mechanisms and signal transduction pathways are involved in the process of hypertensive MF, which is of great significance for the occurrence and development of ventricular dilatation and heart failure. MF is the pathological basis of hypertensive heart disease (HHD), and blood pressure control is the key to delaying MF and reducing the occurrence of cardiovascular events. Although a large number of experimental results suggest that anti-MF drug therapy has made great progress, the conclusions of relevant clinical trials are still not optimistic, and it is urgent to find new effective anti-MF medicine. The clinical efficacy of traditional Chinese medicine (TCM) in the treatment of MF in HHD is obvious, and some achievements have been made in the mechanism research. Studies have confirmed that a variety of TCM compound prescription and natural compounds play different degrees of inhibitory effect on MF. In this study, we reviewed the pathogenesis of MF in HHD and the current drug treatment strategies, summarized the latest research progress of TCM in the treatment of MF in HHD, and demonstrated the mechanism of its cardiac protective effect. Finally, we pointed out the limitations of the current study and prospected the future research of TCM.


Assuntos
Cardiomiopatias , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Hipertensão , Humanos , Medicina Tradicional Chinesa , Cardiomiopatias/patologia , Hipertensão/tratamento farmacológico , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico
13.
J Microsc ; 287(3): 148-155, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789488

RESUMO

The phase image of tapping-mode atomic force microscopy (TM-AFM) contains energy dissipation, which is related to the sample information on the physical properties such as the sample Young's modulus, adhesion, surface morphology and subsurface morphology. When TM-AFM is used for sample measurement, the frequency near the first resonance peak of probe is usually selected to drive the probe vibration. When the probe vibration is driven by the frequency, the probe has a high amplitude sensitivity, but the phase sensitivity is relatively low. In this paper, the frequency at the probe phase resonance peak was selected for driving the probe vibration to measure the sample, which improved the image resolution. Phase imaging was performed on three uniform photoresist samples with different thicknesses and the same structure. When the scanning parameters were fixed and the probe setpoint value was changed alone, it was found that with the decrease of setpoint value the horizontal resolution of the phase subsurface image was decreased, and the depth sensitivity was increased first and then decreased. The result shows that TM-AFM working at the phase resonance peak can better realise the subsurface imaging of samples at different depths. Phase subsurface imaging at the resonance can be used to quantitatively obtain subsurface phase images of different depths.


Assuntos
Vibração , Módulo de Elasticidade , Microscopia de Força Atômica/métodos
14.
Entropy (Basel) ; 24(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885192

RESUMO

The resolution of 3D structure reconstructed by laboratory nanoCT is often affected by changes in ambient temperature. Although correction methods based on projection alignment have been widely used, they are time-consuming and complex. Especially in piecewise samples (e.g., chips), the existing methods are semi-automatic because the projections lose attenuation information at some rotation angles. Herein, we propose a fast correction method that directly processes the reconstructed slices. Thus, the limitations of the existing methods are addressed. The method is named multiscale dense U-Net (MD-Unet), which is based on MIMO-Unet and achieves state-of-the-art artifacts correction performance in nanoCT. Experiments show that MD-Unet can significantly boost the correction performance (e.g., with three orders of magnitude improvement in correction speed compared with traditional methods), and MD-Unet+ improves 0.92 dB compared with MIMO-Unet in the chip dataset.

15.
FASEB J ; 34(12): 16117-16128, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047367

RESUMO

It is considered that intestinal barrier dysfunction and systemic endotoxemia drive obesity and its related complications. However, what causes barrier dysfunction remains to be elucidated. Here, we showed that the gut microbiota from high-fat diet (HFD)-fed mice had impaired ability to degrade dietary flavonoids, and in correspondence, the microbial-derived flavonoid metabolite desaminotyrosine (DAT) was reduced. Supplementation of DAT in the drinking water was able to counter the HFD-induced body fat mass accumulation and body weight increment. This is correlated with the role of DAT in maintaining mucosal immune homeostasis to protect barrier integrity. DAT could attenuate dextran sodium sulfate (DSS)-induced mucosal inflammation in a type I interferon signal-dependent manner. Furthermore, intraperitoneal injection of DAT-protected mice from bacterial endotoxin-induced septic shock. Together, we identified DAT as a gut microbiota-derived anti-inflammatory metabolite that functions to modulate local and systemic immune homeostasis. Our data support the notion of dysbiosis being an important driving force of mucosal barrier dysfunction and systemic metabolic complications.


Assuntos
Anti-Inflamatórios/farmacologia , Microbioma Gastrointestinal/fisiologia , Homeostase/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Fenilpropionatos/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Endotoxemia/tratamento farmacológico , Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Choque Séptico/tratamento farmacológico
16.
Pharmacol Res ; 166: 105510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610720

RESUMO

Cardiovascular disease (CVD), including heart failure, myocardial fibrosis and myocardial infarction, etc, remains one of the leading causes of mortality worldwide. Evidence shows that miRNA plays an important role in the pathogenesis of CVD. miR-29 family is one of miRNA, and over the past decades, many studies have demonstrated that miR-29 is involved in maintaining the integrity of arteries and in the regulation of atherosclerosis, especially in the process of myocardial fibrosis. Besides, heart failure, myocardial fibrosis and myocardial infarction are inseparable from the regulatory role of miR-29. Here, we comprehensively review recent studies regarding miR-29 and CVD, illustrate the possibility of miR-29 as a potential marker for prevention, treatment and prognostic observation.


Assuntos
Doenças Cardiovasculares/genética , MicroRNAs/genética , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Fibrose , Regulação da Expressão Gênica , Humanos , MicroRNAs/análise , Miocárdio/patologia , Prognóstico
17.
Pharmacol Res ; 167: 105563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33746053

RESUMO

Macrophages are heterogeneous cells that have different physiological functions, such as chemotaxis, phagocytosis, endocytosis, and secretion of various factors. All physiological functions of macrophages are integral to homeostasis, immune defense and tissue repair. However, in several diseases, macrophages are recruited from the blood towards inflammatory sites. This process is called macrophage migration, which promotes deleterious disease progression. Macrophage migration is a key player in many inflammatory diseases, autoimmune diseases and cancers because it contributes to the accumulation of proinflammatory factors, the destruction of tissues and the development of tumors. Therefore, macrophage migration is proposed to be a potential therapeutic target. Macrophages migrate between two-dimensional (2D) and three-dimensional (3D) environments, implying that distinct migratory features and mechanisms are involved. Compared with the 2D migration of macrophages, 3D migration involves more complex variations in cellular morphology and dynamics. The structure of the extracellular matrix, a key factor, is modified in diseases that influence macrophage 3D migration. Macrophage 3D migration relates to disease pathology. Research that focuses on macrophage 3D migration is an emerging field and was reviewed in this article to indicate the molecular and cellular mechanisms of macrophage migration in 3D environments and to provide potential targets for controlling disease progression associated with this migration.


Assuntos
Movimento Celular , Inflamação/patologia , Macrófagos/patologia , Animais , Anti-Inflamatórios/farmacologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Descoberta de Drogas , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
18.
Int J Legal Med ; 135(2): 409-419, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32524192

RESUMO

The SureID® PathFinder Plus is a new 6-dye, 41-plex Y-STR system that includes the 17 loci from the Yfiler® kit (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, and Y-GATA-H4) plus 14 rapidly mutating Y-STR loci (DYS449, DYS481, DYS518, DYS527a/b, DYS533, DYS549, DYS570, DYS576, DYS627, DYF387S1a/b, and DYF404S1), and 10 low-medium mutation loci (DYS388, DYS444, DYS447, DYS460, DYS522, DYS557, DYS593, DYS596, DYS643, and DYS645). The inclusion of the 14 rapidly mutating Y-STR loci improves the discrimination of related individuals. Conversely, the 10 low-medium mutation loci are suitable not only for familial searching but also for providing a higher refinement in the construction of Y chromosome phylogenetic relationships among lineages. The 41-plex Y-STR system is designed for direct amplification of reference samples, such as blood samples on an FTA® Card, gauze, tissue, or cotton substrates as well as hair root or buccal samples on swabs. We performed developmental validation work including accuracy, stability, stutter precision, species specificity, sensitivity, PCR inhibitors, reproducibility, parallel testing of the system, and suitability for use on DNA mixtures. In addition, mutations of the loci were analyzed by 754 DNA-confirmed father-son pairs. The results demonstrate that this kit, developed in-house, is time-efficient, accurate, reliable, and highly informative for forensic database, familial searching, and distinguishing related males.


Assuntos
Cromossomos Humanos Y/genética , Impressões Digitais de DNA/métodos , DNA/análise , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase Multiplex/instrumentação , Análise de Sequência de DNA/instrumentação , Povo Asiático/genética , Etnicidade/genética , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Int J Legal Med ; 135(3): 783-785, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33141282

RESUMO

Y-chromosome haplotypes of 527 non-related males (176 Han, 186 Tibetan, and 165 Yi) in the Tibetan-Yi corridor were analyzed using SureID® PathFinder Plus. In the populations of Han, Tibetans, and Yi, the haplotype diversity was 0.9989, 0.9981, and 0.9993, respectively, and the discrimination capacity was 0.9148, 0.8925, and 0.9576, respectively. Phylogenetic relationships among 12 studied ethnic groups and 7 other ethnic groups in the Tibetan-Yi corridor were investigated. Both multi-dimensional scaling analysis and phylogenetic reconstructions indicated that Tibetans appeared separated from the Han and Yi ethnic groups in the Tibetan-Yi corridor. Their genetic homogeneity or heterogeneity has not entirely been affected by their geographical distance and linguistic origin.


Assuntos
Povo Asiático/etnologia , Povo Asiático/genética , Cromossomos Humanos Y , Etnicidade/genética , Haplótipos , Repetições de Microssatélites , Alelos , Variação Genética , Genética Populacional , Humanos , Masculino , Filogenia , Tibet/etnologia
20.
Nanotechnology ; 33(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34087806

RESUMO

In this work, a rich variety of self-assembled DNA patterns were obtained in the magnetic field. Herein, atomic force microscopy (AFM) was utilized to investigate the effects of the concentration of DNA solution, intensity and direction of magnetic field and modification of mica surface by different cations on the self-assembly of DNA molecules. It was found that owning to the change of the DNA concentration, even under the same magnetic field, the DNA self-assembly results were different. Thein situtest results showed that the DNA self-assembly in an magnetic field was more likely to occur in liquid phase than in gas phase. In addition, whether in a horizontal or vertical magnetic field, a single stretched dsDNA was obtained in a certain DNA concentration and magnetic field intensity. Besides, the modification of cations on the mica surface significantly increased the force between the DNA molecules and mica surface, and further changed the self-assembly of DNA molecules under the action of magnetic field.


Assuntos
DNA , Campos Magnéticos , Silicatos de Alumínio/química , Cátions/química , DNA/química , DNA/metabolismo , DNA/efeitos da radiação , Microscopia de Força Atômica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA