Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0306986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39106289

RESUMO

Graphosoma rubrolineatum (Hemiptera: Pentatomidae) is an important pest of vegetables and herbs (e.g., Umbelliferae and Cruciferae) in China, Siberia, Korea, and Japan. Insects are highly dependent on their olfactory system to detect odorants. However, no molecular-mediated olfactory genes in G. rubrolineatum have yet been identified. In this study, we first established the antennal transcriptome of G. rubrolineatum and identified 189 candidate olfactory genes, including 31 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs),94 odorant receptors (ORs), 23 ionotropic receptors (IRs), and 22 gustatory receptors (GRs). Additionally, phylogenetic trees were constructed for olfactory genes between G. rubrolineatum and other hemipteran insects. We also detected the expression profiles of ten OBPs, five CSPs, two SNMPs, five ORs, four IRs, and four GRs by real-time quantitative PCR. The results revealed that most genes (GrubOBP1/11/31, GrubCSP3/8, GrubSNMP1a/1b, GrubOrco/OR9/11/13, GrubGR1/4/22, GrubIR25/75h/76b/GluR1) were highly expressed in the antennae, GrubOBP13/31 and GrubCSP4/11/12 were highly expressed in the legs, while GrubOBP20 and GrubGR19 were highly expressed in the wings. Our results will enrich the gene inventory of G. rubrolineatum and provide further insight into the molecular chemosensory mechanisms of G. rubrolineatum.


Assuntos
Antenas de Artrópodes , Proteínas de Insetos , Filogenia , Receptores Odorantes , Transcriptoma , Animais , Antenas de Artrópodes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Perfilação da Expressão Gênica , Olfato/genética
2.
Front Physiol ; 14: 1224009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520822

RESUMO

A sophisticated and sensitive olfactory system plays a vital role in the survival and reproduction of insects. Chemosensory receptors are indispensable for the molecular recognition and discrimination of semiochemicals. Riptortus pedestris is a notorious pest of legume plants, resulting in yield losses and quality decreases in soybeans. It is well accepted that R. pedestris highly relies on its olfactory system in detecting aggregation pheromones, host volatiles, and pesticides; however, little research focused on its chemosensory receptors. In the present study, we identified 237 odorant receptors (ORs), 42 gustatory receptors (GRs), and 31 ionotropic receptors (IRs) from the reported genome of R. pedestris, and analyzed their phylogenetic relationship with other hemipteran species. Through the results of RNA-seq and real-time quantitative PCR (qRT-PCR), we found that RpedORs displayed different expression levels in the antennae of R. pedestris at different development stages. To further verify the function of odorant receptor co-receptor (Orco), an obligate and unique insect OR, we silenced RpedOrco by RNA interference (RNAi) method. The results showed that silencing RpedOrco could significantly impair the response to aggregation pheromone in R. pedestris, indicating that RpedOrco plays an essential role in odorant detection. Our results can provide the theoretical foundations for revealing the olfactory recognition mechanism of R. pedestris and help explore and develop novel olfactory-based agents against this pest.

3.
Pest Manag Sci ; 79(10): 3504-3510, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37140406

RESUMO

BACKGROUND: Intraspecific competition is shared in the insect world, especially under the condition of limited food and space resources. To avoid intraspecific competition and increase offspring survival, insects have evolved various effective strategies. A widely-accepted tactic is employing chemical cues, which are frequently utilized as indicators of conspecific colonization. The sweet potato weevil (SPW), Cylas formicarius, is a destructive pest of sweet potatoes. Its larvae bore into sweet potatoes and alter the emission of odors. The present study aimed to investigate whether volatiles associated with SPW larvae feeding influence the behavioral preference of conspecific adults. RESULTS: Volatiles from SPW larvae-infested sweet potatoes were collected by a head-space method and analyzed using gas chromatography-electroantennogram detector (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). Five compounds eliciting EAD responses from the antennae of both male and female adult SPW were identified from sweet potatoes with the third-instar larvae, including linalool, citronellol, nerol, geraniol, and ipomeamarone. Four monoterpene alcohols significantly repelled SPW adults from feeding and oviposition at higher doses in the behavioral preference bioassays. Among them, geraniol displayed the strongest repellent activities for SPW feeding and oviposition. These results suggested that SPW larvae could reduce colonization of adult SPWs by inducing monoterpene alcohols, thereby avoiding intraspecific competition. CONCLUSION: The present study demonstrated that volatile monoterpene alcohols induced by SPW larvae are chemical cues of larvae occupation for SPW adults to change their behavioral preference. Unveiling factors that mediate avoidance of intraspecific competition could help develop repellents or oviposition deterrents for SPW control. © 2023 Society of Chemical Industry.


Assuntos
Repelentes de Insetos , Ipomoea batatas , Solanum tuberosum , Gorgulhos , Feminino , Masculino , Animais , Larva , Monoterpenos/farmacologia , Oviposição
4.
Front Physiol ; 12: 649590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927641

RESUMO

An accurate olfactory system for recognizing semiochemicals and environmental chemical signals plays crucial roles in survival and reproduction of insects. Among all olfaction-related proteins, olfactory receptors (ORs) contribute to the conversion of chemical stimuli to electric signals and thereby are vital in odorant recognition. Olfactory receptor co-receptor (Orco), one of the most conserved ORs, is extremely essential in recognizing odorants through forming a ligand-gated ion channel complex with conventional ligand-binding odorant receptors. We have previously identified aggregation pheromone in Protaetia brevitarsis (Coleoptera: Scarabaeidae), a native agricultural and horticultural pest in East-Asia. However, to our best knowledge, its olfaction recognition mechanisms are still veiled. To illustrate how P. brevitarsis recognize aggregation pheromone and host plants, in the present study we cloned and sequenced the full-length Orco gene from P. brevitarsis antennae (named PbreOrco) and found that PbreOrco is highly conserved and similar to Orcos from other Coleoptera insects. Our real-time quantitative PCR (qRT-PCR) results showed that PbreOrco is mainly expressed in antenna. We also demonstrated that silencing PbreOrco using RNA interference through injecting dsOrco fragment significantly inhibited PbreOrco expression in comparison with injecting control dsGFP and subsequently revealed using electroantennogram and behavioral bioassays that decreasing PbreOrco transcript abundance significantly impaired the responses of P. brevitarsis to intraspecific aggregation pheromone and prolonged the time of P. brevitarsis spending on food seeking. Overall, our results demonstrated that PbreOrco is crucial in mediating odorant perception in P. brevitarsis.

5.
PLoS One ; 15(8): e0237134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764791

RESUMO

Olfaction plays vital roles in the survival and reproduction of insects. The completion of olfactory recognition requires the participation of various complex protein families. However, little is known about the olfactory-related proteins in Semiothisa cinerearia Bremer et Grey, an important pest of Chinese scholar tree. In this study, we sequenced the antennal transcriptome of S. cinerearia and identified 125 olfactory-related genes, including 25 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), 52 odorant receptors (ORs), eight gustatory receptors (GRs) and 23 ionotropic receptors (IRs). BLASTX best hit results and phylogenetic analyses indicated that these genes were most identical to their respective orthologs from Ectropis obliqua. Further quantitative real-time PCR (qRT-PCR) analysis revealed that three ScinOBPs and three ScinORs were highly expressed in male antennae, while seven ScinOBPs and twelve ScinORs were female-specifically expressed. Our study will be useful for the elucidation of olfactory mechanisms in S. cinerearia.


Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/fisiologia , Olfato/fisiologia , Animais , Antenas de Artrópodes/citologia , Feminino , Proteínas de Insetos/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Odorantes , Neurônios Receptores Olfatórios/metabolismo , Filogenia , RNA-Seq , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
6.
Plant Physiol Biochem ; 151: 197-213, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229405

RESUMO

To better understand cytokinin signaling in melon (Cucumis melo L.), one of the most important fruit crops in the Cucurbitaceae family, we identified and characterized melon two-component system (TCS) genes in this study. The results showed that there were 51 genes encoding putative TCS proteins in melon, and these TCS genes were classified into 3 subgroups, with 17 HK(L)s (histidine kinase/histidine-kinase like; 9 HKs and 8 HKLs), 9 HPs (histidine phosphotransfer proteins; 6 authentic and 3 pseudo), and 25 RRs (response regulators; 8 Type-A, 11 Type-B and 6 pseudo). The identity values of these cytokinin signaling proteins were revealed by analyzing their conserved motifs, domains and amino acid sequences. By analyzing TCS genes in different plant species, we found that melon HK(L)s, HPs and RRs had closer phylogenetic relationships with cucumber genes than with the genes of other plants, and the expansion of melon cytokinin signaling genes might be attributed to segmental duplication events. Analysis of the putative promoter regions (2-kb upstream regions of the start codon) revealed the enrichment of stress- and hormone-response cis-elements. The involvement of these putative TCS genes in melon cytokinin signaling was further supported by qRT-PCR data.


Assuntos
Cucumis melo/genética , Genes de Plantas , Citocininas/genética , Histidina Quinase/genética , Fosfotransferases/genética , Filogenia
7.
Sci Rep ; 7(1): 2950, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592854

RESUMO

Fruit size is an important quality trait in different market classes of Cucumis sativus L., an economically important vegetable cultivated worldwide, but the genetic and molecular mechanisms that control fruit size are largely unknown. In this study, we isolated a natural cucumber mutant, short fruit 1 (sf1), caused by a single recessive Mendelian factor, from the North China-type inbred line CNS2. In addition to significantly decreased fruit length, other fruit-related phenotypic variations were also observed in sf1 compared to the wild-type (WT) phenotype, indicating that sf1 might have pleiotropic effects. Microscopic imaging showed that fruit cell size in sf1 was much larger than that in WT, suggesting that the short fruit phenotype in sf1 is caused by decreased cell number. Fine mapping revealed that sf1 was localized to a 174.3 kb region on chromosome 6. Similarly, SNP association analysis of bulked segregant RNA-Seq data showed increased SNP frequency in the same region of chromosome 6. In addition, transcriptomic analysis revealed that sf1 might control fruit length through the fine-tuning of cytokinin and auxin signalling, gibberellin biosynthesis and signal transduction in cucumber fruits. Overall, our results provide important information for further study of fruit length and other fruit-related features in cucumber.


Assuntos
Cucumis sativus/genética , Frutas/genética , Genes de Plantas , Estudos de Associação Genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA