Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(15): 9497-9564, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436918

RESUMO

This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.

2.
Small ; 20(2): e2306020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661358

RESUMO

To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.


Assuntos
Compostos Inorgânicos , Nanopartículas , Óxidos , Titânio , Humanos , Feminino , Animais , Caenorhabditis elegans , Peixe-Zebra , Compostos de Cálcio/toxicidade , Nanopartículas/toxicidade
3.
Chem Rev ; 122(13): 11474-11513, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35603576

RESUMO

Light-emitting diodes (LEDs) are attracting considerable attention around the world. Phosphor materials, as crucial color-converted components, play central roles in LED development. The demands for phosphor materials have become increasingly stringent over the past decades, from high brightness to narrowband emission or function-dependent spectrum engineering. Although substantial progress has been made for currently developed phosphor materials, simultaneously satisfying all requirements for high-level applications remains challenging. In this review, we aim to provide a comprehensive understanding of the development of phosphor materials in different generations and to elucidate the key designed mechanisms concerning the activators and the host structures to fulfill the aforementioned aspects. We highlight the developments in phosphor materials through the classification of demands for high luminescence, high thermal stability, narrowband emission for high color gamut, and broadband emission for near-infrared. We also focus on elucidating the key designed mechanisms of phosphor materials in different generations. Furthermore, future perspectives about micro-LED applications and nanoluminescent materials are provided. This study opens up an avenue for designing the luminescent materials of the future.


Assuntos
Luminescência , Cor
4.
Inorg Chem ; 61(5): 2595-2602, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061382

RESUMO

Organic-inorganic hybrid metal halides have recently attracted attention in the global research field for their bright light emission, tunable photoluminescence wavelength, and convenient synthesis method. This study reports the detailed properties of (C10H16N)2MnBr4, which emits bright green light with a high photoluminescence quantum yield. Results of powder X-ray diffraction, photoluminescence, thermogravimetric analysis, and Raman spectra show the phase transition of (C10H16N)2MnBr4 at 430 K. This phase transition was identified as the solid to liquid state of (C10H16N)2MnBr4. Moreover, the pressure- and temperature-induced relationship between structural and optical properties in (C10H16N)2MnBr4 can be identified. This investigation provides deep insights into the luminescent properties of metal halide crystals and promotes further research.

5.
Angew Chem Int Ed Engl ; 61(28): e202204411, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481661

RESUMO

The minimization of thermal quenching, which leads to luminescence loss at high temperatures, is one of the most important issues for near-infrared phosphors. In the present work, we investigated the properties of near-infrared Ca(Sc,Mg)(Al, Si)O6 : Cr3+ phosphors with a pyroxene-type structure under blue light excitation. The CaScAlSiO6 : Cr3+ end member of Ca(Sc,Mg)(Al,Si)O6 : Cr3+ phosphor led to broadband emission at a full-width half maximum of 215 nm, whereas the CaMgSi2 O6 : Cr3+ end member exhibited high thermal stability at 150 °C, with an intensity of 88.4 % of that at room temperature. The structural analysis and density functional theory calculations revealed the absence of soft conformations and local space confinement contributed to the high structural rigidity and weakened the thermal quenching effect.

6.
J Am Chem Soc ; 143(45): 19058-19066, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735772

RESUMO

Portable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr3+ ion centers, and it is challenging to design broadband NIR phosphors based on Cr3+-Cr3+ pairs. Here, we explore the solid-solution series SrAl11.88-xGaxO19:0.12Cr3+ (x = 0, 2, 4, 6, 8, 10, and 12) as phosphors featuring Cr3+-Cr3+ pairs and evaluate structure-property relations within the series. We establish the incorporation of Ga within the magentoplumbite-type structure at five distinct crystallographic sites and evaluate the effect of this incorporation on the Cr3+-Cr3+ ion pair proximity. Electron paramagnetic measurements reveal the presence of both isolated Cr3+ and Cr3+-Cr3+ pairs, resulting in NIR luminescence at approximately 650-1050 nm. Unexpectedly, the origin of broadband NIR luminescence with a peak within the range 740-820 nm is related to the Cr3+-Cr3+ ion pair. We demonstrate the application of the SrAl5.88Ga6O19:0.12Cr3+ phosphor, which possesses an internal quantum efficiency of ∼85%, a radiant flux of ∼95 mW, and zero thermal quenching up to 500 K. This work provides a further understanding of spectral shifts in phosphor solid solutions and in particular the application of the magentoplumbites as promising next-generation NIR phosphor host systems.

7.
Angew Chem Int Ed Engl ; 60(8): 3940-3945, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33200499

RESUMO

A solvent-vapor transport route produces centimeter-sized single-crystal red phosphors. The epitaxial growth route to yield its core-shell structure at ambient temperature was adopted. These red phosphors could be applied in all-inorganic WLED devices. Cs2 TiF6 :Mn4+ (CTFM) single crystal provides enhancement of quantum efficiency, moisture resistance, and thermal stability compared to polycrystalline powders. The internal quantum efficiency can reach as high as 98.7 %. To further improve waterproof stability, the Cs2 TiF6 (CTF) shell with tunable thickness has been epitaxially grown on the CTFM single crystal surface and a unique three-step photoluminescence intensity evolution mechanism has been proposed. By combining as-prepared CTFM@CTF core-shell structured single crystal, YAG:Ce single crystal and blue-chip, warm WLEDs with excellent color rendition (Ra =90, R9 =94), low correlated color temperature (CCT=3155 K), and high luminous efficacy were fabricated without any organic resins.

8.
Angew Chem Int Ed Engl ; 60(13): 6955-6959, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33624929

RESUMO

Light-harvesting and conversion ability is important to promote plant growth, and especially when resources are limited. A near-infrared (NIR) nanophosphor embedded with mesoporous silica nanoparticles (MSN), ZnGa2 O4 :Cr3+ ,Sn4+ (ZGOCS), was developed and its optical properties were harnessed to enhance the photosynthetic ability of Brassica rapa spp. chinensis. The broad excitation of ZGOCS from the ultraviolet to the visible region allowed the conversion of extra light into near-infrared light (650-800 nm) and thus promoted the dual photosystem via the Emerson effect. ZGOCS@MSN was spherical with a size of 65±10 nm and good dispersion. A light conversion ability of up to 75 % under different wavelengths was achieved. Moreover, the electron transfer rate of photosynthesis increased by 100 % with a suitable ZGOCS@MSN concentration. Plant and animal models were used to explore the effects of the nanophosphor. ZGOCS@MSN distribution was tracked by monitoring its NIR emission in plant and animal tissues, demonstrating that this nanophosphor can be potentially utilized in plant growth.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Nanopartículas/metabolismo , Dióxido de Silício/metabolismo , Animais , Raios Infravermelhos , Complexos de Proteínas Captadores de Luz/química , Camundongos , Nanopartículas/química , Tamanho da Partícula , Plantas/efeitos dos fármacos , Plantas/metabolismo , Porosidade , Dióxido de Silício/química , Propriedades de Superfície
9.
Inorg Chem ; 59(1): 376-385, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31823613

RESUMO

Two types of infrared fluoride phosphors, Cr3+-doped K3AlF6 and K3GaF6, were developed in this research. The K3Al1-xF6:xCr3+ and K3Ga1-yF6:yCr3+ fluoride phosphors were proven to be pure phase via X-ray diffraction refinement, which demonstrated that the procedure can be applied to large-scale production. Electron paramagnetic resonance measurements indicated that Cr3+ ions in cubic with respect to noncubic are coupled better with K3GaF6 than with K3AlF6. The main differences between these two phosphors, the site symmetry and pressure behavior of the spectra, were obtained in temperature- and pressure-dependent spectra. According to the calculation results, Cr3+ in fluorine coordination at ambient pressure indicates an intermediate crystal field. For the phosphor-converted light-emitting diodes (LEDs) fabricated from these two phosphors, the spectral range is from 650 to 1000 nm, which resulted in a radiant flux of 7-8 mW with an input power of 1.05 W. The research reveals detailed luminous properties, which will lead to a new way of studying Cr3+-doped fluoride phosphors and their application in LEDs.

10.
Inorg Chem ; 59(20): 15101-15110, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32998510

RESUMO

Near-infrared (NIR) phosphors are fascinating materials that have numerous applications in diverse fields. In this study, a series of La3Ga5GeO14:Cr3+ phosphors, which was incorporated with Sn4+, Ba2+, and Sc3+, was successfully synthesized using solid-state reaction to explore every cationic site comprehensively. The crystal structures were well resolved by combining synchrotron X-ray diffraction and neutron powder diffraction through joint Rietveld refinements. The trapping of free electrons induced by charge unbalances and lattice vacancies changes the magnetic properties, which was well explained by a Dyson curve in electron paramagnetic resonance. Temperature and pressure-dependent photoluminescence spectra reveal various luminescent properties between strong and weak fields in different dopant centers. The phosphor-converted NIR light-emitting diode (pc-NIR LED) package demonstrates a superior broadband emission that covers the near-infrared (NIR) region of 650-1050 nm. This study can provide researchers with new insight into the control mechanism of multiple-cation-site phosphors and reveal a potential phosphor candidate for practical NIR LED application.

11.
Nanotechnology ; 31(13): 134004, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31751976

RESUMO

Pathogenic bacterial infection, especially in the wound, may threaten human health. Developing new antibacterial materials for wound healing is still urgent. Metal nanoclusters have been explored as a novel antibacterial agent. Herein, biomolecule gelatin was chosen as a substrate and functionalized with gold/silver clusters for bacterial killing. Through a simple amidation reaction, gold/silver clusters were successfully conjugated in a gelatin substrate to obtain a Au/Ag@gelatin sponge. The presence of gold/silver clusters modified the porous structure of the gelatin. Thus, the water absorption and water retention of the Au/Ag@gelatin sponge were enhanced. More importantly, the gold/silver clusters show aggregation-enhanced emission and strong reactive oxygen generation, that endow the Au/Ag@gelatin sponge with a good antibacterial property. The good physical performance and favorable bactericidal activity of the Au/Ag@gelatin sponge suggest its potential for application as a wound dressing.


Assuntos
Antibacterianos/farmacologia , Gelatina/farmacologia , Ouro/química , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Gelatina/química , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Porosidade , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Suínos
12.
J Chem Phys ; 152(22): 220901, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534522

RESUMO

In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a "plasmonic photosensitizer." This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices.

13.
J Am Chem Soc ; 141(51): 20118-20126, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31804069

RESUMO

Designing atomically dispersed metal catalysts for oxygen reduction reaction (ORR) is a promising approach to achieve efficient energy conversion. Herein, we develop a template-assisted method to synthesize a series of single metal atoms anchored on porous N,S-codoped carbon (NSC) matrix as highly efficient ORR catalysts to investigate the correlation between the structure and their catalytic performance. The structure analysis indicates that an identical synthesis method results in distinguished structural differences between Fe-centered single-atom catalyst (Fe-SAs/NSC) and Co-centered/Ni-centered single-atom catalysts (Co-SAs/NSC and Ni-SAs/NSC) because of the different trends of each metal ion in forming a complex with the N,S-containing precursor during the initial synthesis process. The Fe-SAs/NSC mainly consists of a well-dispersed FeN4S2 center site where S atoms form bonds with the N atoms. The S atoms in Co-SAs/NSC and Ni-SAs/NSC, on the other hand, form metal-S bonds, resulting in CoN3S1 and NiN3S1 center sites. Density functional theory (DFT) reveals that the FeN4S2 center site is more active than the CoN3S1 and NiN3S1 sites, due to the higher charge density, lower energy barriers of the intermediates, and products involved. The experimental results indicate that all three single-atom catalysts could contribute high ORR electrochemical performances, while Fe-SAs/NSC exhibits the highest of all, which is even better than commercial Pt/C. Furthermore, Fe-SAs/NSC also displays high methanol tolerance as compared to commercial Pt/C and high stability up to 5000 cycles. This work provides insights into the rational design of the definitive structure of single-atom catalysts with tunable electrocatalytic activities for efficient energy conversion.

14.
Nanotechnology ; 30(18): 182001, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30645984

RESUMO

Applying nanobubbles (NBs) for contrast-enhanced ultrasound imaging has received increased attention. NBs are biocompatible, multifunctional, theranostic agents. Their properties of high echogenicity and stability create an agent suitable for ultrasonography diagnosis. Their favorable properties of size, in vivo stability, and ease of modification are being exploited to implement a theranostic platform for cancer treatment. The considerable development offers the potential to overcome drug resistance and adverse side effects that are associated with traditional chemotherapy. This review outlines the principles of ultrasonography and angiogenesis. Microbubbles and micelles are also discussed to underline the superior capabilities of NBs for the application. NBs could passively accumulate to tumor tissue by enhanced permeability and retention effect. In addition, it can also achieve the active transportation by surface modification. Active targeting modalities and stimuli-responsive drug delivery modifications generate a therapeutic vehicle. The cytotoxicity of NBs formulations, multimodal imaging capability, active targeting mechanisms, and drug delivery methods are highlighted to confirm the NB as a vehicle for targeted treatment and enhanced ultrasound imaging.


Assuntos
Meios de Contraste/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias , Nanomedicina Teranóstica/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ultrassonografia
15.
Angew Chem Int Ed Engl ; 58(23): 7767-7772, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30957924

RESUMO

In this study, a series of Sr(LiAl3 )1-x (SiMg3 )x N4 :Eu2+ (SLA-SSM) phosphors were synthesized by a solid-solution process. The emission peak maxima of SLA-SSM range from 615 nm to 680 nm, which indicates structural differences in these materials. 7 Li solid-state NMR spectroscopy was utilized to distinguish between the Li(1)N4 and Li(2)N4 tetrahedra in SLA-SSM. Differences in the coordination environments of the two Sr sites were found which explain the unexpected luminescent properties. Three discernible morphologies were detected by scanning electron microscopy. Temperature-dependent photoluminescence and decay times were used to understand the diverse environments of europium ions in the two strontium sites Sr1 and Sr2, which also support the NMR analysis. Moreover, X-ray absorption near-edge structure studies reveal that the Eu2+ concentration in SLA-SSM is much higher than that in in SrLiAl3 N4 :Eu2+ and SrSiMg3 N4 :Eu2+ phosphors. Finally, an overall mechanism was proposed to explain the how the change in photoluminescence is controlled by the size of the coordinated cation.

16.
Angew Chem Int Ed Engl ; 58(7): 2069-2072, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30556265

RESUMO

Light-emitting diodes break barriers of size and performance for displays. With devices becoming smaller, the materials also need to get smaller. Chromium(III)-doped oxide phosphors, which emit near-infrared (NIR) light, have recently been used in small electronic devices. In this work, mesoporous silica nanoparticles were used as nanocarriers. The nanophosphor ZnGa2 O4 :Cr3+ ,Sn4+ formed in the mesopore after sintering. Good dispersity and morphology were performed with average diameters of 71±7 nm. It emitted light at 600-850 nm; the intensity was optimized by tuning the doping ratio of Cr3+ and Sn4+ . Meanwhile, the light conversion efficiency increased from 7.8 % to 37 % and the molar concentration increased from 0.125 m to 0.5 m. The higher radiant flux of 3.3 mW was obtained by operating an input current of 45 mA. However, the NIR nanophosphor showed good performance on mini light-emitting diode chips.

17.
Small ; 14(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194973

RESUMO

Perovskite quantum dots (PQDs) attract significant interest in recent years because of their unique optical properties, such as tunable wavelength, narrow emission, and high photoluminescence quantum efficiency (PLQY). Recent studies report new types of formamidinium (FA) PbBr3 PQDs, PQDs with organic-inorganic mixed cations, divalent cation doped colloidal CsPb1-x Mx Br3 PQDs (M = Sn2+ , Cd2+ , Zn2+ , Mn2+ ) featuring partial cation exchange, and heterovalent cation doped into PQDs (Bi3+ ). These PQD analogs open new possibilities for optoelectronic devices. For commercial applications in lighting and backlight displays, stability of PQDs requires further improvement to prevent their degradation by temperature, oxygen, moisture, and light. Oxygen and moisture-facilitated ion migration may easily etch unstable PQDs. Easy ion migration may result in crystal growth, which lowers PLQY of PQDs. Surface coating and treatment are important procedures for overcoming such factors. In this study, new types of PQDs and a strategy of improving their stabilities are introduced. Finally, this paper discusses future applications of PQDs in light-emitting diodes.

18.
Small ; 14(40): e1801882, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066496

RESUMO

Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.

19.
Inorg Chem ; 57(21): 13071-13074, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351076

RESUMO

In this paper, we report a simple, rapid, and stable method for the continuous synthesis of highly stable Cs4PbBr6 perovskite microcrystals (MCs) using a microfluidic system. To demonstrate the potential application of Cs4PbBr6 MCs, the sample was fabricated with K2SiF6:Mn4+ phosphor onto InGaN blue chips as white-light-emitting diodes (LEDs). Our white-LED device achieved a high National Television Standards Committee value of 119% for backlight display, which indicated that the Cs4PbBr6 MC is a promising material for future applications.

20.
Nanotechnology ; 29(50): 505401, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30240363

RESUMO

In the present report, vertically-aligned graphene nanowalls are grown on Ni foam (VA-G/NF) using plasma-enhanced chemical vapor deposition method at room temperature. Optimization of the growth conditions provides graphene sheets with controlled defect sites. The unique architecture of the vertically-aligned graphene sheets allows sufficient space for the ionic movement within the sheets and hence enhancing the catalytic activity. Further modification with ruthenium nanoparticles (Ru NPs) drop-casted on VA-G/NF improves the charge overpotential for lithium-oxygen (Li-O2) battery cycles. Such reduction we believe is due to the easier passage of ions between the perpendicularly standing graphene sheets thereby providing ionic channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA