Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2213824120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428923

RESUMO

Cohn et al. (2019) conducted a wallet drop experiment in 40 countries to measure "civic honesty around the globe," which has received worldwide attention but also sparked controversies over using the email response rate as the sole metric of civic honesty. Relying on the lone measurement may overlook cultural differences in behaviors that demonstrate civic honesty. To investigate this issue, we conducted an extended replication study in China, utilizing email response and wallet recovery to assess civic honesty. We found a significantly higher level of civic honesty in China, as measured by the wallet recovery rate, than reported in the original study, while email response rates remained similar. To resolve the divergent results, we introduce a cultural dimension, individualism versus collectivism, to study civic honesty across diverse cultures. We hypothesize that cultural differences in individualism and collectivism could influence how individuals prioritize actions when handling a lost wallet, such as contacting the wallet owner or safeguarding the wallet. In reanalyzing Cohn et al.'s data, we found that email response rates were inversely related to collectivism indices at the country level. However, our replication study in China demonstrated that the likelihood of wallet recovery was positively correlated with collectivism indicators at the provincial level. Consequently, relying solely on email response rates to gauge civic honesty in cross-country comparisons may neglect the vital individualism versus collectivism dimension. Our study not only helps reconcile the controversy surrounding Cohn et al.'s influential field experiment but also furnishes a fresh cultural perspective to evaluate civic honesty.


Assuntos
Individualidade , Humanos , China
2.
Am J Hum Genet ; 109(4): 571-586, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240055

RESUMO

TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.


Assuntos
Deficiência Intelectual , Alelos , Animais , Criança , DNA Complementar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Drosophila/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Convulsões/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
3.
Macromol Rapid Commun ; 45(4): e2300566, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931779

RESUMO

Donor-acceptor (D-A) conjugated polymer (CP) featuring high charge mobility and widely tunable energy bands have shown promising prospects in photocatalysis. In this work, a library of ternary D-A CPs (22 polymers) based on benzothiadiazole, bithiophene, and fluorene derivatives (i.e., fluorene [Fl], 9,9-dihexylfluorene [HF], and 9,9'-spirobifluorene [SF]) with and without alkyl side chains, and with 3D geometry are designed and synthesized via atom-economical direct C-H arylation polymerization to explore the synergetic effects of stereochemistry, D/A ratio, and alkyl chains on the properties and photocatalytic performances, which reveal that 1) the cross-shaped 3D spirobifluorene (SF) building block shows the highest hydrogen evolution rates (HER) owing to the sufficient photocatalytic active sites exposed, 2) the alkyl-free linear polymer (FlBtBT0.05 ) exhibit the highest photocatalytic pollutant degradation performance owing to its superior charge separation, and 3) the alkyl side chains are redundances that will exert detrimental effects on the aqueous photocatalysis owing to their insulating and hydrophobic property. The structure-property-performance correlation results obtained will provide a desirable guideline for the rational design of CP-based photocatalysts.


Assuntos
Poluentes Ambientais , Fluorenos , Hidrogênio , Polimerização , Polímeros
4.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474617

RESUMO

Conjugated polymers (CPs) have attracted much attention in recent years due to their structural abundance and tunable energy bands. Compared with CP-based materials, the inorganic semiconductor TiO2 has the advantages of low cost, non-toxicity and high photocatalytic hydrogen production (PHP) performance. However, studies on polymeric-inorganic heterojunctions, composed of D-A type CPs and TiO2, for boosting the PHP efficiency are still rare. Herein, an elucidation that the photocatalytic hydrogen evolution activity can actually be improved by forming polymeric-inorganic heterojunctions TFl@TiO2, TS@TiO2 and TSO2@TiO2, facilely synthesized through efficient in situ direct C-H arylation polymerization, is given. The compatible energy levels between virgin TiO2 and polymeric semiconductors enable the resulting functionalized CP@TiO2 heterojunctions to exhibit a considerable photocatalytic hydrogen evolution rate (HER). Especially, the HER of TSO2@TiO2 heterojunction reaches up to 11,220 µmol g-1 h-1, approximately 5.47 and 1260 times higher than that of pristine TSO2 and TiO2 photocatalysts. The intrinsic merits of a donor-acceptor conjugated polymer and the interfacial interaction between CP and TiO2 account for the excellent PHP activity, facilitating the separation of photo-generated excitons. Considering the outstanding PHP behavior, our work discloses that the coupling of inorganic semiconductors and suitable D-A conjugated CPs would play significant roles in the photocatalysis community.

5.
Angew Chem Int Ed Engl ; 63(6): e202313370, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37875462

RESUMO

Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.


Assuntos
Polímeros , Proteínas , Polímeros/química , Proteínas/química , Espectrometria de Massas em Tandem
6.
Angew Chem Int Ed Engl ; 63(24): e202405314, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602843

RESUMO

Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI). The designed ADI aqueous system exhibits phosphorescence that can be severely perturbed when the temperature is higher than 110 K at a concentration of the order of 10-5 M, indicating changes in hydration for ADI. Using the ADI phosphorescent probe, it is found that the microstructures of water ice, i.e., crystalline vs. glassy, can be strongly dictated by a trace amount (as low as 10-5 M) of water-soluble organic molecules. Consistent with cryoSEM images and temperature-dependent Raman spectral data, the ADI is dehydrated in more crystalline ice and hydrated in more glassy ice. The current investigation serves as a starting point for using more sensitive spectroscopic techniques for studying water-organics interactions at a much lower concentration and wider temperature range.

7.
Proteins ; 91(9): 1245-1253, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37186412

RESUMO

Understanding the process of protein-RNA interaction is essential for structural biology. The thermodynamic process is an important part to uncover the protein-RNA interaction mechanism. The regulatory networks between protein and RNA in organisms are dominated by the binding or dissociation in the cells. Therefore, determining the binding affinity for protein-RNA complexes can help us to understand the regulation mechanism of protein-RNA interaction. Since it is time-consuming and labor-intensive to determine the binding affinity for protein-RNA complexes by experimental methods, it is necessary and urgent to develop computational methods to predict that. To develop a binding affinity prediction model, first we update the dataset of protein-RNA binding affinity benchmark (PRBAB), which includes 145 complexes now. Second, we extract the structural features based on complex structure, and then we analyze and select the representative structural features to train the regression model. Third, we random select the subset from the PRBAB2.0 to fit the protein-RNA binding affinity determined by experiment. In the end, we tested our model on the nonredundant PDBbind dataset, and the results showed that Pearson correlation coefficient r = .57 and RMSE = 2.51 kcal/mol. The Pearson correlation coefficient achieves 0.7 while removing 5 complex structures with modified residues/nucleotides and metal ions. While testing on ProNAB, the results showed that 71.60% of the prediction achieves Pearson correlation coefficient r = .61 and RMSE = 1.56 kcal/mol with experiment values.


Assuntos
Benchmarking , Nucleotídeos , RNA , Projetos de Pesquisa , Termodinâmica
8.
J Am Chem Soc ; 145(32): 17755-17766, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527404

RESUMO

Precise activation of polymer nanoparticles at lesion sites is crucial to achieve favorable therapeutic efficacy. However, conventional endogenous stimuli-responsive polymer nanoparticles probably suffer from few triggers to stimulate the polymer degradation and subsequent functions. Here, we describe oxidation-responsive poly(ferrocene) amphiphiles containing phenylboronic acid ester and ferrocene as the repeating backbone units. Upon triggering by hydrogen peroxide inside the tumor cells, the phenylboronic acid ester bonds are broken and poly(ferrocene) units are degraded to afford free ferrocene and noticeable hydroxide ions. The released hydroxide ions can immediately improve the pH value within the poly(ferrocene) aggregates, and the degradation rate of the phenylboronic acid ester backbone is further promoted by the upregulated pH; thereupon, the accelerated degradation can release much more additional hydroxide ions to improve the pH, thus achieving a positive self-amplified cascade degradation of poly(ferrocene) aggregates accompanied by oxidative stress boosting and efficient cargo release. Specifically, the poly(ferrocene) aggregates can be degraded up to ∼90% within 12 h when triggered by H2O2, while ferrocene-free control nanoparticles are degraded by only 30% within 12 days. In addition, the maleimide moieties tethered in the hydrophilic corona can capture blood albumin to form an albumin-rich protein corona and significantly improve favorable tumor accumulation. The current oxidation-responsive poly(ferrocene) amphiphiles can efficiently inhibit tumors in vitro and in vivo. This work provides a proof-of-concept paradigm for self-amplified polymer degradation and concurrent oxidative stress, which is promising in actively regulated precision medicine.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Peróxido de Hidrogênio/química , Polímeros/farmacologia , Polímeros/química , Estresse Oxidativo , Concentração de Íons de Hidrogênio , Albuminas , Ésteres , Nanopartículas/química
9.
J Am Chem Soc ; 145(42): 23176-23187, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37822292

RESUMO

Polymeric nanoparticles (NPs) have been extensively designed for theranostic agent delivery. Previous methods for tracking their biological behavior and assessing theranostic efficacy heavily rely on fluorescence or isotope labeling. However, these labeling techniques may alter the physicochemical properties of the labeled NPs, leading to inaccurate biodistribution information. Therefore, it is highly desirable to develop label-free techniques for accurately assessing the biological fate of polymeric NPs. Here, we create discrete oligourethane amphiphiles (DOAs) with methoxy (OMe), hydroxyl (OH), and maleimide (MI) moieties at the dendritic oligo(ethylene glycol) (dOEG) ends. We obtained four types of digital nanorods (NRs) with distinct surface functional groups through self-assembly of a single DOA (OMe and OH NRs) or coassembly of two DOAs (OMe-MI and OH-MI NRs). These unique NRs can be directly quantified in a label-free manner by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Specifically, OMe-MI NRs exhibited the best blood circulation, and OH-MI showed the highest area under the curve (AUC) value after intravenous injection. Biodistribution studies demonstrated that MI-containing NRs generally had lower accumulation in the liver and spleen compared to that of MI-free NRs, except for the comparison between OMe and OMe-MI NRs in the liver. Proteomics studies unveiled the formation of distinct protein coronas that may greatly affect the biological behavior of NRs. This study not only provides a label-free technique for quantifying the pharmacokinetics and biodistribution of polymeric NRs but also highlights the significant impact of surface functional groups on the biological fate of polymeric NPs.


Assuntos
Nanopartículas , Nanotubos , Distribuição Tecidual , Nanotubos/química , Nanopartículas/química , Espectrometria de Massas
10.
BMC Med ; 21(1): 500, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110931

RESUMO

BACKGROUND: More than half of patients with tuberous sclerosis complex (TSC) suffer from drug-resistant epilepsy (DRE), and resection surgery is the most effective way to control intractable epilepsy. Precise preoperative localization of epileptogenic tubers among all cortical tubers determines the surgical outcomes and patient prognosis. Models for preoperatively predicting epileptogenic tubers using 18F-FDG PET images are still lacking, however. We developed noninvasive predictive models for clinicians to predict the epileptogenic tubers and the outcome (seizure freedom or no seizure freedom) of cortical tubers based on 18F-FDG PET images. METHODS: Forty-three consecutive TSC patients with DRE were enrolled, and 235 cortical tubers were selected as the training set. Quantitative indices of cortical tubers on 18F-FDG PET were extracted, and logistic regression analysis was performed to select those with the most important predictive capacity. Machine learning models, including logistic regression (LR), linear discriminant analysis (LDA), and artificial neural network (ANN) models, were established based on the selected predictive indices to identify epileptogenic tubers from multiple cortical tubers. A discriminating nomogram was constructed and found to be clinically practical according to decision curve analysis (DCA) and clinical impact curve (CIC). Furthermore, testing sets were created based on new PET images of 32 tubers from 7 patients, and follow-up outcome data from the cortical tubers were collected 1, 3, and 5 years after the operation to verify the reliability of the predictive model. The predictive performance was determined by using receiver operating characteristic (ROC) analysis. RESULTS: PET quantitative indices including SUVmean, SUVmax, volume, total lesion glycolysis (TLG), third quartile, upper adjacent and standard added metabolism activity (SAM) were associated with the epileptogenic tubers. The SUVmean, SUVmax, volume and TLG values were different between epileptogenic and non-epileptogenic tubers and were associated with the clinical characteristics of epileptogenic tubers. The LR model achieved the better performance in predicting epileptogenic tubers (AUC = 0.7706; 95% CI 0.70-0.83) than the LDA (AUC = 0.7506; 95% CI 0.68-0.82) and ANN models (AUC = 0.7425; 95% CI 0.67-0.82) and also demonstrated good calibration (Hosmer‒Lemeshow goodness-of-fit p value = 0.7). In addition, DCA and CIC confirmed the clinical utility of the nomogram constructed to predict epileptogenic tubers based on quantitative indices. Intriguingly, the LR model exhibited good performance in predicting epileptogenic tubers in the testing set (AUC = 0.8502; 95% CI 0.71-0.99) and the long-term outcomes of cortical tubers (1-year outcomes: AUC = 0.7805, 95% CI 0.71-0.85; 3-year outcomes: AUC = 0.8066, 95% CI 0.74-0.87; 5-year outcomes: AUC = 0.8172, 95% CI 0.75-0.87). CONCLUSIONS: The 18F-FDG PET image-based LR model can be used to noninvasively identify epileptogenic tubers and predict the long-term outcomes of cortical tubers in TSC patients.


Assuntos
Epilepsia , Esclerose Tuberosa , Humanos , Fluordesoxiglucose F18 , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/metabolismo , Reprodutibilidade dos Testes , Glicólise , Estudos Retrospectivos
11.
Annu Rev Public Health ; 44: 55-74, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626834

RESUMO

Public health surveillance is defined as the ongoing, systematic collection, analysis, and interpretation of health data and is closely integrated with the timely dissemination of information that the public needs to know and upon which the public should act. Public health surveillance is central to modern public health practice by contributing data and information usually through a national notifiable disease reporting system (NNDRS). Although early identification and prediction of future disease trends may be technically feasible, more work is needed to improve accuracy so that policy makers can use these predictions to guide prevention and control efforts. In this article, we review the advantages and limitations of the current NNDRS in most countries, discuss some lessons learned about prevention and control from the first wave of COVID-19, and describe some technological innovations in public health surveillance, including geographic information systems (GIS), spatial modeling, artificial intelligence, information technology, data science, and the digital twin method. We conclude that the technology-driven innovative public health surveillance systems are expected to further improve the timeliness, completeness, and accuracy of case reporting during outbreaks and also enhance feedback and transparency, whereby all stakeholders should receive actionable information on control and be able to limit disease risk earlier than ever before.


Assuntos
COVID-19 , Vigilância em Saúde Pública , Humanos , Vigilância em Saúde Pública/métodos , Inteligência Artificial , COVID-19/epidemiologia , COVID-19/prevenção & controle , Sistemas de Informação Geográfica , Medição de Risco , Vigilância da População/métodos , Saúde Pública
12.
Acc Chem Res ; 55(23): 3404-3416, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36351034

RESUMO

In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.


Assuntos
Lipossomos , Nanoestruturas , Permeabilidade , Polímeros/química , Nanoestruturas/química , Água , Lipídeos
13.
Macromol Rapid Commun ; 44(23): e2300318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572085

RESUMO

It is an urgent need to develop efficient solid state cooling technologies and materials with high cycle life. Poly-p-phenylene benzodioxole (PBO) is a high performance fiber with excellent mechanical properties. In this work, for the first time, elasto- and twistocaloric cooling of PBO fibers by stretching and twisting of the PBO fiber bundles is reported. The cooling temperature reaches -0.4 and -1.3 K, for fiber stretching and twisting, respectively. A self-coiled PBO fiber achieves maximum cooling of -3.7 K upon stretching by 35% strain, with an exceptionally high cycle life of 200 000 times. During the twisting of the PBO fibers, reversible changes in the intensity of the diffraction peaks in X-ray diffraction patterns are observed. A strain-sensitive color change application is realized by coating a self-coiled PBO fiber with liquid crystallite dyes. This work provides new perspectives for PBO fibers as a high cycle-life solid-state refrigeration material.


Assuntos
Cicloparafinas , Compostos Heterocíclicos , Temperatura Baixa , Temperatura , Benzodioxóis
14.
Cereb Cortex ; 32(23): 5259-5272, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35195262

RESUMO

BACKGROUND: Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults, with pathological mechanisms remaining to be fully elucidated. Fibroblast Growth Factor 13 (FGF13) encodes an intracellular protein involved in microtubule stabilization and regulation of voltage-gated sodium channels (VGSCs) function. FGF13 mutation has been identified in patients with inherent seizure, suggesting a potential association between FGF13 and the etiology of TLE. Here, we set to explore the pathological role of FGF13 in the etiology of TLE. RESULTS: We found that the expression of FGF13 was increased in the cortical lesions and CA1 region of sclerotic hippocampus and correlated with the seizure frequency in TLE patients. Also, Fgf13 expression was increased in the hippocampus of chronic TLE mice generated by kainic acid (KA) injection. Furthermore, Fgf13 knockdown or overexpression was respectively found to attenuate or potentiate the effects of KA on axonal length, somatic area and the VGSCs-mediated current in the hippocampal neurons. CONCLUSIONS: Taken together, these findings suggest that FGF13 is involved in the pathogenesis of TLE by modulating microtubule activity and neuronal excitability.


Assuntos
Epilepsia do Lobo Temporal , Fatores de Crescimento de Fibroblastos , Animais , Camundongos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Fatores de Crescimento de Fibroblastos/genética , Hipocampo/metabolismo , Ácido Caínico , Convulsões
15.
Genomics ; 114(1): 149-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921931

RESUMO

Since RBPs play important roles in the cell, it's particularly important to find new RBPs. We performed iRIP-seq and CLIP-seq to verify two proteins, CLIP1 and DMD, predicted by RBPPred whether are RBPs or not. The experimental results confirm that these two proteins have RNA-binding activity. We identified significantly enriched binding motifs UGGGGAGG, CUUCCG and CCCGU for CLIP1 (iRIP-seq), DMD (iRIP-seq) and DMD (CLIP-seq), respectively. The computational KEGG and GO analysis show that the CLIP1 and DMD share some biological processes and functions. Besides, we found that the SNPs between DMD and its RNA partners may be associated with Becker muscular dystrophy, Duchenne muscular dystrophy, Dilated cardiomyopathy 3B and Cardiovascular phenotype. Among the thirteen cancers data, CLIP1 and another 300 oncogenes always co-occur, and 123 of these 300 genes interact with CLIP1. These cancers may be associated with the mutations occurred in both CLIP1 and the genes it interacts with.


Assuntos
Proteínas de Ligação a RNA , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Biologia Computacional , Distrofina/genética , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005221

RESUMO

Due to their structural and property tunability, semiconductive conjugated polymers (CPs) have emerged as promising candidates for photocatalytic water splitting. Compared with inorganic materials, the photocatalytic performance of mono-component polymers was limited by the fast recombination of photoexcited charge carriers, and they always needed to catch up to expectations. To this end, researchers established molecular donor-acceptor heterostructures, which could notably promote oxygen production efficiency due to their more effective charge carrier separation. In this work, easy Schiff base reactions between side-chain -CHO groups and terminal -NH2 groups were used to introduce benzene and perylene diimide (PDI) into the molecular heterostructure to serve as electron donors (D) and electron acceptors (A). In particular, for the first time, we employed the molecular heterostructures of CPs to promote photocatalytic O2 production. One prepared molecular heterostructure was demonstrated to improve oxygen generation rate (up to 0.53 mmol g-1 h-1) through visible light-driven water splitting. Interestingly, based on the photoelectric properties, a stepwise two-electron/two-electron pathway constituted the photocatalytic mechanism for oxygen production with the molecular heterostructure. These results provide insights into designing and fabricating high-performance molecular heterostructures for photocatalytic oxygen production.

17.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298982

RESUMO

Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C-H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and fused thienothiophene and dithienothiophene, respectively, to produce donor-acceptor (D-A)-type linear conjugated polymers containing different thiophene derivatives with different conjugation lengths. Among them, the D-A polymer photocatalyst constructed from dithienothiophene could significantly broaden the spectral response, with a hydrogen evolution rate up to 12.15 mmol h-1 g-1. The results showed that the increase in the number of fused rings on thiophene building blocks was beneficial to the photocatalytic hydrogen production of cyanostyrylphene-based linear polymers. For the unfused dithiophene and terthiophene, the increase in the number of thiophene rings enabled more rotation freedom between the thiophene rings and reduced the intrinsic charge mobility, resulting in lower hydrogen production performance accordingly. This study provides a suitable process for the design of electron donors for D-A polymer photocatalysts.


Assuntos
Hidrogênio , Doadores de Tecidos , Humanos , Polímeros , Tiofenos
18.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903455

RESUMO

In this paper, an atom- and step-economic direct C-H arylation polymerization (DArP) strategy was developed to access cyanostyrylthiophene (CST)-based donor-acceptor (D-A) conjugated polymers (CPs) used for photocatalytic hydrogen production (PHP) from water reduction. The new CST-based CPs CP1-CP5 with varied building blocks were systematically studied by X-ray single-crystal analysis, FTIR, scanning electron microscopy, UV-vis, photoluminescence, transient photocurrent response, cyclic voltammetry measurements, and a PHP test, which showed that the phenyl-cyanostyrylthiophene-based CP3 exhibits a superior hydrogen evolution rate (7.60 mmol h-1 g-1) compared to other conjugated polymers. The structure-property-performance correlation results obtained in this study will provide an important guideline for the rational design of high-performance D-A CPs for PHP applications.

19.
Angew Chem Int Ed Engl ; 62(30): e202303829, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235518

RESUMO

Amphiphilic self-immolative polymers (SIPs) can achieve complete degradation solely through one triggerable event, which potentially optimize the blood clearance and uncontrollable/inert degradability for therapeutic nanoparticles. Herein, we report self-immolative amphiphilic poly(ferrocenes), BPnbs -Fc, composed by self-immolative backbone and aminoferrocene (AFc) side chains as well as end-capping poly(ethylene glycol) monomethyl ether. Upon triggering by tumor acidic milieu, the BPnbs -Fc nanoparticles readily degrade to release azaquinone methide (AQM) moieties, which can rapidly deplete intracellular glutathione (GSH) to cascade release AFc. Furthermore, both AFc and its product Fe2+ can catalyze intracellular hydrogen peroxide (H2 O2 ) into highly reactive hydroxyl radicals (⋅OH), thus amplifying the oxidative stress of tumor cells. Rational synergy of GSH depletion and ⋅OH burst can efficiently inhibit tumor growth by the SIPs in vitro and in vivo. This work provides an elegant design to adopt innate tumor milieu-triggerable SIPs degradation to boost cellular oxidative stress, which is a promising candidate for precision medicine.


Assuntos
Nanopartículas , Neoplasias , Humanos , Metalocenos , Polietilenoglicóis/química , Estresse Oxidativo , Polímeros/química , Neoplasias/tratamento farmacológico , Peróxido de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Nanopartículas/química , Glutationa/metabolismo
20.
Angew Chem Int Ed Engl ; 62(3): e202214695, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36412223

RESUMO

The use of sequence-defined digital polymers for data storage and encryption has received increasing attention due to their precision structures similar to natural biomacromolecules (e.g., DNA) but increased stability. However, the rapid development of sequencing techniques raises the concern of information leakage. Herein, dendritic quaternary-encoded oligourethanes bearing a photoresponsive trigger, self-immolative backbones, and a mass spectrometry tag of PEG dendron have been developed for data encryption. Although the sequence information in linear analogs can be readily deciphered by mass spectrometry, sequencing of dendritic oligourethanes cannot be achieved by either primary MS or tandem MS/MS owing to the unique spatial conformation. Intriguingly, the fragmentation pathways of a quaternary dendrimer under MS/MS conditions can be converted to 2772-bit 2D matrices with ≈1.98×1087 permutations, serving as high-strength encryption keys for highly reliable data encryption.


Assuntos
Segurança Computacional , Espectrometria de Massas em Tandem , Polímeros , DNA , Armazenamento e Recuperação da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA