Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Genomics ; 24(1): 599, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814207

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the two main types of non-coding RNAs that play crucial roles in plant growth and development. However, their specific roles in the fiber growth of ramie plant (Boehmeria nivea L. Gaud) remain largely unknown. METHODS: In this study, we performed miRNA and whole-transcriptome sequencing of two stem bark sections exhibiting different fiber growth stages to determine the expression profiles of miRNAs, lncRNAs, and protein-encoding genes. RESULTS: Among the identified 378 miRNAs and 6,839 lncRNAs, 88 miRNAs and 1,288 lncRNAs exhibited differential expression. Bioinformatics analysis revealed that 29 and 228 differentially expressed protein-encoding genes were targeted by differentially expressed miRNAs and lncRNAs, respectively, constituting eight putative competing endogenous RNA networks. lncR00022274 exhibited downregulated expression in barks with growing fibers. It also had an antisense overlap with the MYB gene, BntWG10016451, whose overexpression drastically increased the xylem fiber number and secondary wall thickness of fibers in the stems of transgenic Arabidopsis, suggesting the potential association of lncR00022274-BntWG10016451 expression with fiber growth. CONCLUSIONS: These findings provide insights into the roles of ncRNAs in the regulation of fiber growth in ramie, which can be used for the biotechnological improvement of its fiber yield and quality in the future.


Assuntos
Boehmeria , MicroRNAs , RNA Longo não Codificante , Transcriptoma , Perfilação da Expressão Gênica , Boehmeria/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética
2.
Physiol Plant ; 175(6): e14112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148228

RESUMO

With the intensification of the greenhouse effect and the continuous rise of global temperature, high temperatures in summer seriously affect the growth of green onion (Allium fistulosum L.var.caespitosum Makino) and reduce its yield and quality. It is important to study the mechanism of heat tolerance in green onion for selecting and breeding new varieties with high-temperature tolerance. In this study, we used the heat-tolerant green onion variety AF60 and heat-sensitive green onion variety AF35 and measured their physiological indexes under different durations of heat stress. The results showed that high-temperature stress adversely affected the water content, protein composition and antioxidant system of green onion. In addition, a comprehensive analysis using transcriptomics and metabolomics showed that heat-tolerant green onions responded positively to heat stress by up-regulating the expression of heat shock proteins, whereas heat-sensitive green onions responded to heat stress by activating the galactose metabolic pathway and maintained normal physiological activities. This study revealed the physiological performance and high-temperature response pathways of different heat-tolerant green onion cultivars under heat stress. The results further deepen the understanding of the molecular mechanism of green onion's heat stress response.


Assuntos
Biodiversidade , Multiômica , Temperatura , Cebolas/genética , Antioxidantes
3.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069099

RESUMO

Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.


Assuntos
Alho , Humanos , Alho/genética , Alho/metabolismo , Domesticação , Fenótipo , Perfilação da Expressão Gênica , Produtos Agrícolas/genética , Reprodução/genética
4.
Plant J ; 107(3): 787-800, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33993558

RESUMO

Ramie (Boehmeria nivea) is an economically important natural fiber-producing crop that has been cultivated for thousands of years in China; however, the evolution of this crop remains largely unknown. Here, we report a ramie domestication analysis based on genome assembly and resequencing of cultivated and wild accessions. Two chromosome-level genomes representing wild and cultivated ramie were assembled de novo. Numerous structural variations between two assemblies, together with the genetic variations from population resequencing, constituted a comprehensive genomic variation map for ramie. Domestication analysis identified 71 high-confidence selective sweeps comprising 320 predicted genes, and 29 genes from sweeps were associated with fiber growth in the expression. In addition, we identified seven genetic loci associated with the fiber yield trait in the segregated population derived from the crossing of two assembled accessions, and two of which showed an overlap with the selective sweeps. These findings indicated that bast fiber traits were focused on during the domestication history of ramie. This study sheds light on the domestication of ramie and provides a valuable resource for biological and breeding studies of this important crop.


Assuntos
Boehmeria/genética , Genoma de Planta , Filogenia , Seleção Genética , Cruzamento , Cromossomos de Plantas/genética , Modelos Biológicos , Componentes Aéreos da Planta , Análise de Componente Principal
5.
Plant Biotechnol J ; 20(2): 323-334, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34558775

RESUMO

Ramie is an important fibre-producing crop in China; however, the genetic basis of its agronomic traits remains poorly understood. We produced a comprehensive map of genomic variation in ramie based on resequencing of 301 landraces and cultivars. Genetic analysis produced 129 signals significantly associated with six fibre yield-related traits, and several genes were identified as candidate genes for respective traits. Furthermore, we found that natural variations in the promoter region of Bnt14G019616 were associated with extremely low fibre abundance, providing the first evidence for the role of pectin methylesterase in fibre growth of plants. Additionally, nucleotide diversity analysis revealed that breeding selection has been markedly focussed on chromosome 9 in which ~ 39.6% sequence underwent selection, where one gibberellin-signalling-repressed DELLA gene showed distinct selection signatures in the cultivars. This study provides insights into the genetic architecture and breeding history of fibre yield traits in ramie. Moreover, the identification of fibre yield-related genetic loci and large-scale genomic variation represent valuable resources for genomics-assisted breeding of this crop.


Assuntos
Boehmeria , Boehmeria/genética , Loci Gênicos , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética
6.
BMC Genomics ; 22(1): 865, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856929

RESUMO

BACKGROUND: Ramie is an important fiber-producing crop in China, and its fibers are widely used as textile materials. Fibers contain specialized secondary cellular walls that are mainly composed of cellulose, hemicelluloses, and lignin. Understanding the mechanism underlying the secondary wall biosynthesis of fibers will benefit the improvement of fiber yield and quality in ramie. RESULTS: Here, we performed a proteomic analysis of the bark from the top and middle parts of the stem, where fiber growth is at different stages. We identified 6971 non-redundant proteins from bast bark. Proteomic comparison revealed 983 proteins with differential expression between the two bark types. Of these 983 proteins, 46 were identified as the homolog of known secondary wall biosynthetic proteins of Arabidopsis, indicating that they were potentially associated with fiber growth. Then, we proposed a molecular model for the secondary wall biosynthesis of ramie fiber. Furthermore, interaction analysis of 46 candidate proteins revealed two interacting networks that consisted of eight cellulose biosynthetic enzymes and seven lignin biosynthetic proteins, respectively. CONCLUSION: This study sheds light on the proteomic basis underlying bast fiber growth in ramie, and the identification of many candidates associated with fiber growth provides important basis for understanding the fiber growth in this crop.


Assuntos
Boehmeria , Celulose , Lignina , Proteínas de Plantas/genética , Proteômica
7.
BMC Plant Biol ; 21(1): 473, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656094

RESUMO

BACKGROUND: Phosphorylation modification, one of the most common post-translational modifications of proteins, widely participates in the regulation of plant growth and development. Fibers extracted from the stem bark of ramie are important natural textile fibers; however, the role of phosphorylation modification in the growth of ramie fibers is largely unknown. RESULTS: Here, we report a phosphoproteome analysis for the barks from the top and middle section of ramie stems, in which the fiber grows at different stages. A total of 10,320 phosphorylation sites from 9,170 unique phosphopeptides that were assigned to 3,506 proteins was identified, and 458 differentially phosphorylated sites from 323 proteins were detected in the fiber developmental barks. Twelve differentially phosphorylated proteins were the homologs of Arabidopsis fiber growth-related proteins. We further focused on the function of the differentially phosphorylated KNOX protein whole_GLEAN_10029667, and found that this protein dramatically repressed the fiber formation in Arabidopsis. Additionally, using a yeast two-hybridization assay, we identified a kinase and a phosphatase that interact with whole_GLEAN_10029667, indicating that they potentially target this KNOX protein to regulate its phosphorylation level. CONCLUSION: The finding of this study provided insights into the involvement of phosphorylation modification in ramie fiber growth, and our functional characterization of whole_GLEAN_10029667 provide the first evidence to indicate the involvement of phosphorylation modification in the regulation of KNOX protein function in plants.


Assuntos
Boehmeria/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteoma , Boehmeria/genética , Boehmeria/crescimento & desenvolvimento , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Fosfoproteínas Fosfatases/genética , Fosfoproteínas/genética , Fosforilação , Casca de Planta/crescimento & desenvolvimento , Casca de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Proteínas Quinases/genética , Têxteis , Técnicas do Sistema de Duplo-Híbrido
8.
Planta ; 254(1): 1, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081200

RESUMO

MAIN CONCLUSION: A total of 249 sites from 197 proteins showed a differential ubiquitination level in the fiber development of ramie barks. The function of two differentially ubiquitinated proteins for fiber growth was demonstrated. Ubiquitination is one of the most common post-translational modifications of proteins, and it plays essential roles in plant growth and development. However, the involvement of ubiquitination in the growth of plant fibers remains largely unknown. We compared the ubiquitylome of the top and middle stems of ramie bark, with different fiber growth stages. We identified 249 differentially ubiquitinated sites in 197 proteins in fiber-developing barks in the stems and found that seven were homologs of Arabidopsis proteins associated with fiber growth. Overexpression of the differentially ubiquitinated proteins, RWA3 homolog whole_GLEAN_10024150 and MYB protein whole_GLEAN_10015497, significantly promoted fiber growth in transgenic Arabidopsis, indicating their involvement in this process. We also found that the abundance of these proteins decreased when their ubiquitination levels increased and vice versa in the fiber-developing bark. These results indicated that the abundance of these two proteins was adjusted through ubiquitin-dependent degradation. Collectively, our findings provide important insights into the involvement of ubiquitination in the growth of ramie fibers.


Assuntos
Boehmeria , Desenvolvimento Vegetal , Estruturas Vegetais , Ubiquitinação
9.
BMC Genomics ; 20(1): 657, 2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31419936

RESUMO

BACKGROUND: Garlic bulbs are abnormal expanding axillary buds that are rarely found among vascular plants. Bulb-yield is one of the valuable agronomic traits of garlic. However, due to the large genome size and a strictly asexual life cycle in the cultivars, the genetic basis of the yield traits are poorly understood in garlic. RESULTS: In the present study, we carried out an association mapping for three yield traits of garlic bulbs: bulb weight (BW), diameter (BD), and the number of garlic cloves (CN), using the recently proposed transcriptome-referenced association study. In total 25, 2, and 30 single nucleotide polymorphisms (SNPs), were identified in the transcripts to be associated with BW, BD, and CN traits, respectively. Of the transcripts with associated SNPs, the expression of 17 of them showed a significant correlation with the corresponding traits in the population, suggesting their relation to bulbs yield traits. Six transcripts were long non-coding RNAs (lncRNAs), and the others encode proteins involved mainly in carbohydrate metabolism, transcription regulation, cytokinin activity, protein degradation, etc. In addition, expression quantitative trait locus (eQTL) and expression correlation analysis have revealed that seven CN-related transcripts displayed interrelation, constituting two potential pathways. CONCLUSION: This study provides novel insights into the genetic basis of the yield traits in garlic bulbs, and the identification of trait-associated SNPs/transcripts provides a basis for improving the bulb yield in garlic breeding.


Assuntos
Alho/genética , Raízes de Plantas/genética , Metabolismo dos Carboidratos/genética , Citocininas/genética , Citocininas/metabolismo , Alho/crescimento & desenvolvimento , Alho/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteólise , Locos de Características Quantitativas/genética , RNA Longo não Codificante/metabolismo , Transcriptoma
10.
BMC Genomics ; 20(1): 476, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185891

RESUMO

BACKGROUND: The redundancy of genomic resources, including transcript and molecular markers, and their uncertain position in the genome have dramatically hindered the study of traits in ramie, an important natural fiber crop. RESULTS: We obtained a high-quality transcriptome consisting of 30,591 non-redundant transcripts using single-molecule long-read sequencing and proposed it as a universal ramie transcriptome. Additionally, 55,882 single nucleotide polymorphisms (SNPs) were identified and a high-density genetic map was developed. Based on this genetic map, 181.7 Mb ramie genome sequences were assembled into 14 chromosomes. For the convenient use of these resources, 29,286 (~ 95.7%) of the transcripts and all 55,882 SNPs, along with 1827 previously reported sequence repeat markers (SSRs), were mapped into the ramie genome, and 22,343 (~ 73.0%) transcripts, 50,154 (~ 89.7%) SNPs, and 1466 (~ 80.3%) SSRs were assigned to a specific location in the corresponding chromosome. CONCLUSION: This is the first study to characterize the ramie transcriptome by long-read sequencing, and the substantial number of transcripts of significant length obtained will accelerate our understanding of ramie growth and development. This integration of genome sequences, expressed transcripts, and genetic markers will provide an extremely useful resource for genetic, molecular, and breeding studies of ramie.


Assuntos
Boehmeria/genética , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Genômica/métodos , Genoma de Planta/genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
11.
BMC Genomics ; 18(1): 60, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28068920

RESUMO

BACKGROUND: Fistular leaves frequently appear in Allium species, and previous developmental studies have proposed that the process of fistular leaf formation involves programmed cell death. However, molecular evidence for the role of programmed cell death in the formation of fistular leaf cavities has yet to be reported. RESULTS: In this study, we characterized the leaf transcriptomes of nine Allium species, including six fistular- and three solid-leaved species. In addition, we identified orthologous genes and estimated their Ka and Ks values, in order to ascertain their selective pattern. Phylogenetic analysis based on the transcriptomes revealed that A. tuberosum was the most ancestral among the nine species, and analysis of orthologous genes between A. tuberosum and the other eight species indicated that 149 genes were subject to positive selection; whereas >3000 had undergone purifying selection in each species. CONCLUSIONS: We found that many genes that are potentially related to programmed cell death either exhibited rapid diversification in fistular-leaved species, or were conserved in solid-leaved species in evolutionary history. These genes potentially involved in programmed cell death might play important roles in the formation of fistular leaf cavities in Allium, and the differing selection patterns in fistular- and solid-leaved species may be responsible for the evolution of fistular leaves.


Assuntos
Allium/crescimento & desenvolvimento , Allium/genética , Perfilação da Expressão Gênica , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Evolução Molecular , Anotação de Sequência Molecular , Filogenia
12.
Int J Mol Sci ; 17(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26751440

RESUMO

Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish.


Assuntos
Fertilidade/genética , Flores/genética , Genoma de Planta , Raphanus/genética , Transcriptoma , Cruzamento , Genoma de Cloroplastos , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala
13.
Int J Mol Sci ; 16(9): 21989-2007, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378527

RESUMO

Root lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs. In this study, the transcriptome of the resistant ramie cultivar Qingdaye was characterized using Illumina sequence technology. About 46.3 million clean pair end (PE) reads were generated and assembled into 40,826 unigenes with a mean length of 830 bp. Digital gene expression (DGE) analysis was performed on both the control roots (CK) and P. coffeae-challenged roots (CH), and the differentially expressed genes (DEGs) were identified. Approximately 10.16 and 8.07 million cDNA reads in the CK and CH cDNA libraries were sequenced, respectively. A total of 137 genes exhibited different transcript abundances between the two libraries. Among them, the expressions of 117 and 20 DEGs were up- and down-regulated in P. coffeae-challenged ramie, respectively. The expression patterns of 15 candidate genes determined by qRT-PCR confirmed the results of DGE analysis. Time-course expression profiles of eight defense-related genes in susceptible and resistant ramie cultivars were different after P. coffeae inoculation. The differential expression of protease inhibitors, pathogenesis-related proteins (PRs), and transcription factors in resistant and susceptible ramie during P. coffeae infection indicated that cystatin likely plays an important role in nematode resistance.


Assuntos
Boehmeria/genética , Boehmeria/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Nematoides , Transcriptoma , Animais , Biologia Computacional/métodos , Anotação de Sequência Molecular
14.
Plant Mol Biol ; 86(1-2): 85-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24934879

RESUMO

Ramie is an old fiber crop, cultivated for thousands of years in China. The cultivar ramie evolved from the wild species Qingyezhuma (QYZM, Boehmeria nivea var. tenacissima). However, the mechanism of domestication of this old fiber crop is poorly understood. In order to characterize the selective pattern in ramie domestication, orthologous genes between the transcriptomes of domesticated ramie variety Zhongzhu 1 (ZZ1) and wild QYZM were assessed using bidirectional best-hit method and ratio of non-synonymous (Ka) to synonymous (Ks) nucleotide substitutions was estimated. Sequence comparison of 56,932 and 59,246 unigenes from the wild QYZM and domesticated ZZ1, respectively, helped identify 10,745 orthologous unigene pairs with a total orthologous length of 10.18 Mb. Among these unigenes, 85 and 13 genes were found to undergo significant purifying and positive selection, respectively. Most of the selected genes were homologs of those involved in abiotic stress tolerance or disease resistance in other plants, suggesting that abiotic and biotic stresses were important selective pressures in ramie domestication. Two genes probably related to the fiber yield of ramie were subjected to positive selection, which may be caused by human manipulation. Thus, our results show the pervasive effects of artificial and natural selections on the accelerated domestication of ramie from its wild relative.


Assuntos
Boehmeria/genética , Produtos Agrícolas/genética , Seleção Genética , Transcriptoma , China , Biblioteca Gênica , Anotação de Sequência Molecular
15.
Mol Genet Genomics ; 289(4): 675-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24691727

RESUMO

NAM, ATAF, and CUC (NAC) genes are plant-specific transcription factors (TFs) that play key roles in plant growth, development, and stress tolerance. To date, none of the ramie NAC (BnNAC) genes had been identified, even though ramie is one of the most important natural fiber crops. In order to mine the BnNAC TFs and identify their potential function, the search for BnNAC genes against two pools of unigenes de novo assembled from the RNA-seq in our two previous studies was performed, and a total of 32 full-length BnNAC genes were identified in this study. Forty-seven function-known NAC proteins published in other species, in concert with these 32 BnNAC proteins were subjected to phylogenetic analysis, and the result showed that all the 79 NAC proteins can be divided into eight groups (NAC-I-VIII). Among the 32 BnNAC genes, 24, 2, and 1 gene showed higher expression in stem xylem, leaf, and flower, respectively. Furthermore, the expression of 14, 11 and 4 BnNAC genes was regulated by drought, cadmium stress, and infection by root lesion nematode, respectively. Interestingly, there were five BnNAC TFs which showed high homology with the NAC TFs of other species involved in regulating the secondary wall synthesis, and their expressions were not regulated by drought and cadmium stress. These results suggested that the BnNAC family might have a functional diversity. The identification of these 32 full-length BnNAC genes and the characterization of their expression pattern provide a basis for future clarification of their functions in ramie growth and development.


Assuntos
Boehmeria/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Boehmeria/efeitos dos fármacos , Boehmeria/crescimento & desenvolvimento , Boehmeria/fisiologia , Cádmio/farmacologia , Secas , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Nematoides/fisiologia , Fases de Leitura Aberta/genética , Especificidade de Órgãos , Filogenia , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , RNA de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
16.
BMC Genomics ; 14: 125, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442184

RESUMO

BACKGROUND: Ramie fiber, extracted from vegetative organ stem bast, is one of the most important natural fibers. Understanding the molecular mechanisms of the vegetative growth of the ramie and the formation and development of bast fiber is essential for improving the yield and quality of the ramie fiber. However, only 418 expressed tag sequences (ESTs) of ramie deposited in public databases are far from sufficient to understand the molecular mechanisms. Thus, high-throughput transcriptome sequencing is essential to generate enormous ramie transcript sequences for the purpose of gene discovery, especially genes such as the cellulose synthase (CesA) gene. RESULTS: Using Illumina paired-end sequencing, about 53 million sequencing reads were generated. De novo assembly yielded 43,990 unigenes with an average length of 824 bp. By sequence similarity searching for known proteins, a total of 34,192 (77.7%) genes were annotated for their function. Out of these annotated unigenes, 16,050 and 13,042 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 19,846 unigenes were mapped to 126 KEGG pathways, and 565 genes were assigned to http://starch and sucrose metabolic pathway which was related with cellulose biosynthesis. Additionally, 51 CesA genes involved in cellulose biosynthesis were identified. Analysis of tissue-specific expression pattern of the 51 CesA genes revealed that there were 36 genes with a relatively high expression levels in the stem bark, which suggests that they are most likely responsible for the biosynthesis of bast fiber. CONCLUSION: To the best of our knowledge, this study is the first to characterize the ramie transcriptome and the substantial amount of transcripts obtained will accelerate the understanding of the ramie vegetative growth and development mechanism. Moreover, discovery of the 36 CesA genes with relatively high expression levels in the stem bark will present an opportunity to understand the ramie bast fiber formation and development mechanisms.


Assuntos
Boehmeria/genética , Perfilação da Expressão Gênica , Genoma de Planta , Glucosiltransferases/genética , Boehmeria/química , Boehmeria/crescimento & desenvolvimento , Celulose/biossíntese , Celulose/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Família Multigênica
17.
BMC Plant Biol ; 13: 130, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020723

RESUMO

BACKGROUND: Ramie fiber extracted from stem bark is one of the most important natural fibers. Drought is a main environment stress which severely inhibits the stem growth of ramie and leads to a decrease of the fiber yield. The drought stress-regulatory mechanism of ramie is poorly understood. RESULT: Using Illumina sequencing, approximately 4.8 and 4.7 million (M) 21-nt cDNA tags were respectively sequenced in the cDNA libraries derived from the drought-stressed ramie (DS) and the control ramie under well water condition (CO). The tags generated from the two libraries were aligned with ramie transcriptome to annotate their function and a total of 23,912 and 22,826 ramie genes were matched by these tags of DS and CO library, respectively. Comparison of gene expression level between CO and DS ramie based on the differences of tag frequencies appearing in the two libraries revealed that there were 1516 potential drought stress-responsive genes, in which 24 genes function as transcription factor (TF). Among these 24 TFs, the unigene19721 encoding the DELLA protein which is a key negative regulator in gibberellins (GAs) signal pathway was probably markedly up-regulated under water stress for a increase of tag abundance in DS library, which is possibly responsible for the inhibition of the growth of drought-stressed ramie. In order to validate the change of expression of these potential stress-responsive TFs under water deficit condition, the unigene19721 and another eleven potential stress-responsive TFs were chosen for further expression analysis in well-watered and drought-stressed ramie by real-time quantitative PCR (qRT-PCR) and the result showed that all 12 TFs were authentically involved in the response of drought stress. CONCLUSION: In this study, twelve TFs involving in the response of drought stress were first found by Illumina tag-sequencing and qRT-PCR in ramie. The discovery of these drought stress-responsive TFs will be helpful for further understanding the drought stress-regulatory mechanism of ramie and improving the drought tolerance ability of ramie.


Assuntos
Boehmeria/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Boehmeria/genética , Secas , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
18.
J Integr Plant Biol ; 55(10): 917-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23692054

RESUMO

A quantitative trait locus (QTL) that affects heading date (HD) and the number of spikelets per panicle (SPP) was previously identified in a small region on chromosome 7 in rice (Oryza sativa L.). In order to further characterize the QTL region, near isogenic lines (NILs) were quickly obtained by self-crossing recombinant inbred line 189, which is heterozygous in the vicinity of the target region. The pleiotropic effects of QTL Ghd7.1 on plant height (PH), SPP, and HD, were validated using an NIL-F2 population. Ghd7.1 explained 50.2%, 45.3%, and 76.9% of phenotypic variation in PH, SPP, and HD, respectively. Ghd7.1 was precisely mapped to a 357-kb region on the basis of analysis of the progeny of the NIL-F2 population. Day-length treatment confirmed that Ghd7.1 is sensitive to photoperiod, with long days delaying heading up to 12.5 d. Identification of panicle initiation and development for the pair of NILs showed that Ghd7.1 elongated the photoperiod-sensitive phase more than 10 d, but did not change the basic vegetative phase and the reproductive growth phase. These findings indicated that Ghd7.1 regulates SPP by controlling the rate of panicle differentiation rather than the duration of panicle development.


Assuntos
Pleiotropia Genética , Oryza/anatomia & histologia , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Genótipo , Haplótipos/genética , Endogamia , Fotoperíodo , Reprodução
19.
Hortic Res ; 10(11): uhad208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38046855

RESUMO

The propagation of cultivated garlic relies on vegetative cloves, thus flowers become non-essential for reproduction in this species, driving the evolution of reproductive feature-derived traits. To obtain insights into the evolutionary alteration of reproductive traits in the clonally propagated garlic, the evolutionary histories of two main reproduction-related traits, bolting and flower differentiation, were explored by genome analyses using 134 accessions displaying wide diversity in these two traits. Resequencing identified 272.8 million variations in the garlic genome, 198.0 million of which represent novel variants. Population analysis identified five garlic groups that have evolved into two clades. Gene expression, single-cell transcriptome sequencing, and genome-wide trait association analyses have identified numerous candidates that correlate with reproductive transition and flower development, some of which display distinct selection signatures. Selective forces acting on the B-box zinc finger protein-encoding Asa2G00291.1, the global transcription factor group E protein-encoding Asa5G01527.1, and VERNALIZATION INSENSITIVE 3-like Asa3G03399.1 appear to be representative of the evolution of garlic bolting. Plenty of novel genomic variations and trait-related candidates represent valuable resources for biological studies of garlic. Numerous selective signatures from genes associated with the two chosen reproductive traits provide important insights into the evolutionary history of reproduction in this clonally propagated crop.

20.
Front Plant Sci ; 13: 890052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498719

RESUMO

GRAS transcription factors play crucial roles in plant growth and development and have been widely explored in many plant species. Garlic (Allium sativum L.) is an important crop owing to its edible and medicinal properties. However, no GRAS transcription factors have been identified in this crop. In this study, 46 garlic GRAS genes were identified and assigned to 16 subfamilies using the GRAS members of Arabidopsis thaliana, Oryza sativa, and Amborella trichopoda as reference queries. Expression analysis revealed that garlic GRAS genes showed distinct differences in various garlic tissues, as well as during different growth stages of the bulbs. Five of these 46 genes were identified as DELLA-like protein-encoding genes and three of which, Asa2G00237.1/Asa2G00240.1 and Asa4G02090.1, responded to exogenous GA3 treatment, and showed a significant association between their transcription abundance and bulb traits in 102 garlic accessions, thereby indicating their role in regulating the growth of garlic bulbs. These results will lay a useful foundation for further investigation of the biological functions of GRAS genes and guiding the genetic breeding of garlic in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA