Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chem Rev ; 124(9): 6051-6077, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38686960

RESUMO

Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.


Assuntos
Aminoácidos , Mutagênese , Biblioteca de Peptídeos , Aminoácidos/química , Aminoácidos/genética , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/genética
2.
Nature ; 587(7835): 673-677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911481

RESUMO

Nucleic acids derived from pathogens induce potent innate immune responses1-6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide cyclic GMP-AMP, which mediates the induction of type I interferons through the STING-TBK1-IRF3 signalling axis7-11. cGAS was previously thought to not react with self DNA owing to its cytosolic localization2,12,13; however, recent studies have shown that cGAS is localized mostly in the nucleus and has low activity as a result of tight nuclear tethering14-18. Here we show that cGAS binds to nucleosomes with nanomolar affinity and that nucleosome binding potently inhibits its catalytic activity. To elucidate the molecular basis of cGAS inactivation by nuclear tethering, we determined the structure of mouse cGAS bound to human nucleosome by cryo-electron microscopy. The structure shows that cGAS binds to a negatively charged acidic patch formed by histones H2A and H2B via its second DNA-binding site19. High-affinity nucleosome binding blocks double-stranded DNA binding and maintains cGAS in an inactive conformation. Mutations of cGAS that disrupt nucleosome binding alter cGAS-mediated signalling in cells.


Assuntos
Nucleossomos/química , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Animais , Biocatálise , Domínio Catalítico , Linhagem Celular , Microscopia Crioeletrônica , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Humanos , Camundongos , Modelos Moleculares , Mutação , Nucleossomos/ultraestrutura , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Ligação Proteica , Transdução de Sinais
3.
Nucleic Acids Res ; 51(13): 6566-6577, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293959

RESUMO

Using an amber suppression-based noncanonical amino acid (ncAA) mutagenesis approach, the chemical space in phage display can be significantly expanded for drug discovery. In this work, we demonstrate the development of a novel helper phage, CMa13ile40, for continuous enrichment of amber obligate phage clones and efficient production of ncAA-containing phages. CMa13ile40 was constructed by insertion of a Candidatus Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/PylT gene cassette into a helper phage genome. The novel helper phage allowed for a continuous amber codon enrichment strategy for two different libraries and demonstrated a 100-fold increase in packaging selectivity. CMa13ile40 was then used to create two peptide libraries containing separate ncAAs, Nϵ-tert-butoxycarbonyl-lysine and Nϵ-allyloxycarbonyl-lysine, respectively. These libraries were used to identify peptide ligands that bind to the extracellular domain of ZNRF3. Each selection showed differential enrichment of unique sequences dependent upon the ncAA used. Peptides from both selections were confirmed to have low micromolar affinity for ZNRF3 that was dependent upon the presence of the ncAA used for selection. Our results demonstrate that ncAAs in phages provide unique interactions for identification of unique peptides. As an effective tool for phage display, we believe that CMa13ile40 can be broadly applied to a wide variety of applications.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Bacteriófagos , Técnicas de Visualização da Superfície Celular , Aminoácidos/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular/métodos , Peptídeos/metabolismo , Descoberta de Drogas
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33597253

RESUMO

Guided by a computational docking analysis, about 30 Food and Drug Administration/European Medicines Agency (FDA/EMA)-approved small-molecule medicines were characterized on their inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Of these small molecules tested, six displayed a concentration that inhibits response by 50% (IC50) value below 100 µM in inhibiting Mpro, and, importantly, three, that is, pimozide, ebastine, and bepridil, are basic molecules that potentiate dual functions by both raising endosomal pH to interfere with SARS-CoV-2 entry into the human cell host and inhibiting Mpro in infected cells. A live virus-based modified microneutralization assay revealed that bepridil possesses significant anti-SARS-CoV-2 activity in both Vero E6 and A459/ACE2 cells in a dose-dependent manner with low micromolar effective concentration, 50% (EC50) values. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.


Assuntos
Antivirais/farmacologia , Bepridil/farmacologia , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Chlorocebus aethiops , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas , Células Vero
5.
Angew Chem Int Ed Engl ; 61(10): e202109550, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783141

RESUMO

As a revolutionary cancer treatment, the chimeric antigen receptor (CAR) T cell therapy suffers from complications such as cytokine release syndromes and T cell exhaustion. Their mitigation desires controllable activation of CAR-T cells that is achievable through regulatory display of CARs. By embedding the hepatitis C virus NS3 protease (HCV-NS3) between the single-chain variable fragment (scFv) and the hinge domain, we showed that the display of anti-CD19 scFv on CAR-T cells was positively correlated to the presence of a clinical HCV-NS3 inhibitor asunaprevir (ASV). This novel CAR design that allows the display of anti-CD19 scFv in the presence of ASV and its removal in the absence of ASV creates a practically reversible chemical switch. We demonstrated that the intact CAR on T cells can be repeatedly turned on and off by controlling the presence of ASV in a dose dependent manner both in vitro and in vivo, which enables delicate modulation of CAR-T activation during cancer treatment.


Assuntos
Isoquinolinas/imunologia , Inibidores de Proteases/imunologia , Receptores de Antígenos Quiméricos/imunologia , Sulfonamidas/imunologia , Linfócitos T/imunologia , Antígenos CD19/imunologia , Humanos
6.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947165

RESUMO

Dehydroalanine exists natively in certain proteins and can also be chemically made from the protein cysteine. As a strong Michael acceptor, dehydroalanine in proteins has been explored to undergo reactions with different thiolate reagents for making close analogues of post-translational modifications (PTMs), including a variety of lysine PTMs. The chemical reagent 2-nitro-5-thiocyanatobenzoic acid (NTCB) selectively modifies cysteine to form S-cyano-cysteine, in which the S-Cß bond is highly polarized. We explored the labile nature of this bond for triggering E2 elimination to generate dehydroalanine. Our results indicated that when cysteine is at the flexible C-terminal end of a protein, the dehydroalanine formation is highly effective. We produced ubiquitin and ubiquitin-like proteins with a C-terminal dehydroalanine residue with high yields. When cysteine is located at an internal region of a protein, the efficiency of the reaction varies with mainly hydrolysis products observed. Dehydroalanine in proteins such as ubiquitin and ubiquitin-like proteins can serve as probes for studying pathways involving ubiquitin and ubiquitin-like proteins and it is also a starting point to generate proteins with many PTM analogues; therefore, we believe that this NTCB-triggered dehydroalanine formation method will find broad applications in studying ubiquitin and ubiquitin-like protein pathways and the functional annotation of many PTMs in proteins such as histones.


Assuntos
Alanina/análogos & derivados , Cisteína/química , Proteínas/química , Tiocianatos/química , Alanina/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes , Espectrometria de Massas por Ionização por Electrospray , Tiocianatos/farmacologia
7.
J Am Chem Soc ; 142(15): 7047-7054, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212692

RESUMO

Proteins with a functionalized C-terminus such as a C-terminal thioester are key to the synthesis of larger proteins via expressed protein ligation. They are usually made by recombinant fusion to intein. Although powerful, the intein fusion approach suffers from premature hydrolysis and low compatibility with denatured conditions. To totally bypass the involvement of an enzyme for expressed protein ligation, here we showed that a cysteine in a recombinant protein was chemically activated by a small molecule cyanylating reagent at its N-side amide for undergoing nucleophilic acyl substitution with amines including a number of l- and d-amino acids and hydrazine. The afforded protein hydrazides could be used further for expressed protein ligation. We demonstrated the versatility of this activated cysteine-directed protein ligation (ACPL) approach with the successful synthesis of ubiquitin conjugates, ubiquitin-like protein conjugates, histone H2A with a C-terminal posttranslational modification, RNase H that actively hydrolyzed RNA, and exenatide that is a commercial therapeutic peptide. The technique, which is exceedingly simple but highly useful, expands to a great extent the synthetic capacity of protein chemistry and will therefore make a large avenue of new research possible.


Assuntos
Inteínas/genética , Proteínas Recombinantes/química , Humanos
8.
Chembiochem ; 21(5): 730-738, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32022370

RESUMO

With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. Although little is known about the virus, an examination of the genome sequence shows strong homology with its better-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations that might hamper the efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RNA-dependent RNA polymerase and coronavirus main proteinase (3CLpro), share a strikingly high (>95 %) homology to SARS-CoV. Herein, we suggest four potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that could be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad-spectrum anti-coronaviral agents for future epidemics.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Pneumonia Viral/prevenção & controle , Antivirais/química , Betacoronavirus/enzimologia , Betacoronavirus/genética , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/transmissão , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/transmissão , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
9.
Bioorg Med Chem ; 28(24): 115808, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071032

RESUMO

As a versatile reaction for bioconjugation, Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has enormous potential in the synthesis of antibody-drug conjugates (ADCs). In order to optimize CuAAC-based ADC synthesis, we characterized kinetically different formulation processes by mimicking ADC synthesis using small molecules and subsequently revealed unique kinetic behaviors of different combinations of alkyne and azide conditions. Our results indicate that under ADC synthesis conditions, for an alkyne-containing drug, its concentration has minimal impact on the reaction rate when an antibody has a non-metal-chelating azide but is proportional to concentration when an antibody contains a metal-chelating azide; however, for an alkyne-containing antibody, the ADC synthesis rate is proportional to the concentration of a drug with a non-metal-chelating azide but displays almost no dependence on drug concentration with a metal-chelating azide. Based on our results, we designed and tested an optimal "click" formulation strategy that allowed rapid and cost-effective synthesis of a new ADC.


Assuntos
Química Click , Imunoconjugados/química , Alcinos/química , Anticorpos Monoclonais Humanizados/química , Azidas/química , Catálise , Cobre/química , Reação de Cicloadição , Preparações Farmacêuticas/química
10.
J Am Chem Soc ; 141(6): 2462-2473, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30653310

RESUMO

Using an engineered pyrrolysyl-tRNA synthetase mutant together with tRNACUAPyl, we have genetically encoded Nε-(7-azidoheptanoyl)-l-lysine (AzHeK) by amber codon in Escherichia coli for recombinant expression of a number of AzHeK-containing histone H3 proteins. We assembled in vitro acyl-nucleosomes from these recombinant acyl-H3 histones. All these acyl-nucleosomes contained an azide functionality that allowed quick click labeling with a strained alkyne dye for in-gel fluorescence analysis. Using these acyl-nucleosomes as substrates and click labeling as a detection method, we systematically investigated chromatin deacylation activities of SIRT7, a class III NAD+-dependent histone deacylase with roles in aging and cancer biology. Besides confirming the previously reported histone H3K18 deacylation activity, our results revealed that SIRT7 has an astonishingly high activity to catalyze deacylation of H3K36 and is also catalytically active to deacylate H3K37. We further demonstrated that this H3K36 deacylation activity is nucleosome dependent and can be significantly enhanced when appending the acyl-nucleosome substrate with a short double-stranded DNA that mimics the bridging DNA between nucleosomes in native chromatin. By overexpressing SIRT7 in human cells, we verified that SIRT7 natively removes acetylation from histone H3K36. Moreover, SIRT7-deficient cells exhibited H3K36 hyperacetylation in whole cell extracts, at rDNA sequences in nucleoli, and at select SIRT7 target loci, demonstrating the physiologic importance of SIRT7 in determining endogenous H3K36 acetylation levels. H3K36 acetylation has been detected at active gene promoters, but little is understood about its regulation and functions. Our findings establish H3K36 as a physiologic substrate of SIRT7 and implicate this modification in potential SIRT7 pathways in heterochromatin silencing and genomic stability.


Assuntos
Cromatina/metabolismo , Sirtuínas/metabolismo , Acilação , Biocatálise , Domínio Catalítico , Química Click , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Sirtuínas/química
11.
Angew Chem Int Ed Engl ; 58(44): 15904-15909, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31398275

RESUMO

Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic-peptide ligands for therapeutic targets, phage-displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage-display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded Nϵ -acryloyl-lysine (AcrK). Using a randomized 6-mer library in which peptides were cyclized at two ends through a cysteine-AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4- to 6-fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.


Assuntos
Código Genético/genética , Biblioteca de Peptídeos , Peptídeos Cíclicos/genética , Ciclização , Cisteína/química , Cisteína/genética , Humanos , Ligantes , Lisina/química , Lisina/genética , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
12.
ACS Med Chem Lett ; 15(6): 950-957, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894905

RESUMO

The main protease (MPro) of SARS-CoV-2 is crucial for the virus's replication and pathogenicity. Its active site is characterized by four distinct pockets (S1, S2, S4, and S1-3') and a solvent-exposed S3 site for accommodating a protein substrate. During X-ray crystallographic analyses of MPro bound with dipeptide inhibitors containing a flexible N-terminal group, we often observed an unexpected binding mode. Contrary to the anticipated engagement with the deeper S4 pocket, the N-terminal group frequently assumed a twisted conformation, positioning it for interactions with the S3 site and the inhibitor component bound at the S1 pocket. Capitalizing on this observation, we engineered novel inhibitors to engage both S3 and S4 sites or to adopt a rigid conformation for selective S3 site binding. Several new inhibitors demonstrated high efficacy in MPro inhibition. Our findings underscore the importance of the S3 site's unique interactions in the design of future MPro inhibitors as potential COVID-19 therapeutics.

13.
ACS Cent Sci ; 10(4): 782-792, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38680566

RESUMO

Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.

14.
J Med Chem ; 67(8): 6495-6507, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38608245

RESUMO

We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Proteólise , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Proteólise/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Células HEK293 , Descoberta de Drogas , Tratamento Farmacológico da COVID-19 , Células A549
15.
Antiviral Res ; 225: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555023

RESUMO

The main protease (MPro) of SARS-CoV-2, the causative agent of COVID-19, is a pivotal nonstructural protein critical for viral replication and pathogenesis. Its protease function relies on three active site pockets for substrate recognition and a catalytic cysteine for enzymatic activity. To develop potential SARS-CoV-2 antivirals, we successfully synthesized a diverse range of azapeptide inhibitors with various covalent warheads to target MPro's catalytic cysteine. Our characterization identified potent MPro inhibitors, including MPI89 that features an aza-2,2-dichloroacetyl warhead with a remarkable EC50 value of 10 nM against SARS-CoV-2 infection in ACE2+ A549 cells and a selective index of 875. MPI89 is also remarkably selective and shows no potency against SARS-CoV-2 papain-like protease and several human proteases. Crystallography analyses demonstrated that these inhibitors covalently engaged the catalytic cysteine and used the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 stands as one of the most potent MPro inhibitors, suggesting the potential for further exploration of azapeptides and the aza-2,2-dichloroacetyl warhead for developing effective therapeutics against COVID-19.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
16.
ACS Chem Biol ; 18(3): 449-455, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36629751

RESUMO

As the COVID-19 pathogen, SARS-CoV-2 relies on its main protease (MPro) for pathogenesis and replication. During crystallographic analyses of MPro crystals that were exposed to the air, a uniquely Y-shaped, S-O-N-O-S-bridged post-translational cross-link that connects three residues C22, C44, and K61 at their side chains was frequently observed. As a novel covalent modification, this cross-link serves potentially as a redox switch to regulate the catalytic activity of MPro, a demonstrated drug target of COVID-19. The formation of this linkage leads to a much more open active site that can potentially be targeted for the development of novel SARS-CoV-2 antivirals. The structural rearrangement of MPro by this cross-link indicates that small molecules that lock MPro in the cross-linked form can potentially be used with other active-site-targeting molecules such as paxlovid for synergistic effects in inhibiting SARS-CoV-2 viral replication.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
17.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808777

RESUMO

We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (M Pro ) is a highly conserved and essential protease that plays key roles in viral replication and pathogenesis among various CoVs, representing one of the most attractive drug targets for antiviral drug development. Traditional antiviral drug development strategies focus on the pursuit of high-affinity binding inhibitors against M Pro . However, this approach often suffers from issues such as toxicity, drug resistance, and a lack of broad-spectrum efficacy. Targeted protein degradation represents a promising strategy for developing next-generation antiviral drugs to combat infectious diseases. Here we leverage the proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 M Pro . Our previously developed M Pro inhibitors MPI8 and MPI29 were used as M Pro ligands to conjugate a CRBN E3 ligand, leading to compounds that can both inhibit and degrade SARS-CoV-2 M Pro . Among them, MDP2 was demonstrated to effectively reduce M Pro protein levels in 293T cells (DC 50 = 296 nM), relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing M Pro protein levels in SARS-CoV-2-infected A549-ACE2 cells, concurrently demonstrating potent anti-SARS-CoV-2 activity (EC 50 = 492 nM). This proof-of-concept study highlights the potential of PROTAC-mediated targeted protein degradation of M Pro as an innovative and promising approach for COVID-19 drug discovery.

18.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711580

RESUMO

SARS-CoV-2 is the coronavirus pathogen of the currently prevailing COVID-19 pandemic. It relies on its main protease (M Pro ) for replication and pathogenesis. M Pro is a demonstrated target for the development of antivirals for SARS-CoV-2. Past studies have systematically explored tripeptidyl inhibitors such as nirmatrelvir as M Pro inhibitors. However, dipeptidyl inhibitors especially those with a spiro residue at their P2 position have not been systematically investigated. In this work, we synthesized about 30 reversibly covalent dipeptidyl M Pro inhibitors and characterized them on in vitro enzymatic inhibition potency, structures of their complexes with M Pro , cellular M Pro inhibition potency, antiviral potency, cytotoxicity, and in vitro metabolic stability. Our results indicated that M Pro has a flexible S2 pocket that accommodates dipeptidyl inhibitors with a large P2 residue and revealed that dipeptidyl inhibitors with a large P2 spiro residue such as ( S )-2-azaspiro[4,4]nonane-3-carboxylate and ( S )-2-azaspiro[4,5]decane-3-carboxylate have optimal characteristics. One compound MPI60 containing a P2 ( S )-2-azaspiro[4,4]nonane-3-carboxylate displayed high antiviral potency, low cellular cytotoxicity, and high in vitro metabolic stability and can be potentially advanced to further preclinical tests.

19.
J Med Chem ; 66(16): 11040-11055, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561993

RESUMO

SARS-CoV-2, the COVID-19 pathogen, relies on its main protease (MPro) for replication and pathogenesis. MPro is a demonstrated target for the development of antivirals for SARS-CoV-2. Past studies have systematically explored tripeptidyl inhibitors such as nirmatrelvir as MPro inhibitors. However, dipeptidyl inhibitors especially those with a spiro residue at their P2 position have not been systematically investigated. In this work, we synthesized about 30 dipeptidyl MPro inhibitors and characterized them on enzymatic inhibition potency, structures of their complexes with MPro, cellular MPro inhibition potency, antiviral potency, cytotoxicity, and in vitro metabolic stability. Our results indicated that MPro has a flexible S2 pocket to accommodate inhibitors with a large P2 residue and revealed that dipeptidyl inhibitors with a large P2 spiro residue such as (S)-2-azaspiro [4,4]nonane-3-carboxylate and (S)-2-azaspiro[4,5]decane-3-carboxylate have favorable characteristics. One compound, MPI60, containing a P2 (S)-2-azaspiro[4,4]nonane-3-carboxylate displayed high antiviral potency, low cellular cytotoxicity, and high in vitro metabolic stability.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Ácidos Carboxílicos , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
20.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090597

RESUMO

Main protease (M Pro ) of SARS-CoV-2, the viral pathogen of COVID-19, is a crucial nonstructural protein that plays a vital role in the replication and pathogenesis of the virus. Its protease function relies on three active site pockets to recognize P1, P2, and P4 amino acid residues in a substrate and a catalytic cysteine residue for catalysis. By converting the P1 Cα atom in an M Pro substrate to nitrogen, we showed that a large variety of azapeptide inhibitors with covalent warheads targeting the M Pro catalytic cysteine could be easily synthesized. Through the characterization of these inhibitors, we identified several highly potent M Pro inhibitors. Specifically, one inhibitor, MPI89 that contained an aza-2,2-dichloroacetyl warhead, displayed a 10 nM EC 50 value in inhibiting SARS-CoV-2 from infecting ACE2 + A549 cells and a selectivity index of 875. The crystallography analyses of M Pro bound with 6 inhibitors, including MPI89, revealed that inhibitors used their covalent warheads to covalently engage the catalytic cysteine and the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 represents one of the most potent M Pro inhibitors developed so far, suggesting that further exploration of the azapeptide platform and the aza-2,2-dichloroacetyl warhead is needed for the development of potent inhibitors for the SARS-CoV-2 M Pro as therapeutics for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA