RESUMO
Developing advanced functional carbon materials is essential for electrocatalysis, caused by their vast merits for boosting many key energy conversion reactions. Herein, the covalent organic frameworks (COFs) is utilized on metal-organic frameworks (MOFs) as the template, under the controllable metal atoms thermal migration process successfully in situ constructs Pd-Co alloy nanoparticles on hollow cubic graphene. The electrocatalytic oxygen reduction reaction (ORR) evaluation showed excellent performances with a half-wave potential of 0.866 V, and a limited current density of 4.975 mA cm-2, that superior to the commercial Pt/C and Co nanoparticles. The contrast experiments and X-ray absorption spectrum demonstrated the aggregated electrons at highly dispersed Pd atoms on Co nanoparticle that promoted the main activities. This work not only enlightens the novel carbon materials designing strategies but also suggests heterogeneous electrocatalysis.
RESUMO
Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.
RESUMO
BACKGROUND: Cancer immunotherapy, particularly immune checkpoint inhibitors (ICBs) such as anti-PD-1 antibodies, has revolutionised cancer treatment, although response rates vary among patients. Previous studies have demonstrated that caerin 1.1 and 1.9, host-defence peptides from the Australian tree frog, enhance the effectiveness of anti-PD-1 and therapeutic vaccines in a murine TC-1 model by activating tumour-associated macrophages intratumorally. METHODS: We employed a murine B16 melanoma model to investigate the therapeutic potential of caerin 1.1 and 1.9 in combination with anti-CD47 and a therapeutic vaccine (triple therapy, TT). Tumour growth of caerin-injected primary tumours and distant metastatic tumours was assessed, and survival analysis conducted. Single-cell RNA sequencing (scRNAseq) of CD45+ cells isolated from distant tumours was performed to elucidate changes in the tumour microenvironment induced by TT. RESULTS: The TT treatment significantly reduced tumour volumes on the treated side compared to untreated and control groups, with notable effects observed by Day 21. Survival analysis indicated extended survival in mice receiving TT, both on the treated and distant sides. scRNAseq revealed a notable expansion of conventional type 1 dendritic cells (cDC1s) and CD4+CD8+ T cells in the TT group. Tumour-associated macrophages in the TT group shifted toward a more immune-responsive M1 phenotype, with enhanced communication observed between cDC1s and CD8+ and CD4+CD25+ T cells. Additionally, TT downregulated M2-like macrophage marker genes, particularly in MHCIIhi and tissue-resident macrophages, suppressing Cd68 and Arg1 expression across all macrophage types. Differential gene expression analysis highlighted pathway alterations, including upregulation of oxidative phosphorylation and MYC target V1 in Arg1hi macrophages, and activation of pro-inflammatory pathways in MHCIIhi and tissue-resident macrophages. CONCLUSION: Our findings suggest that caerin 1.1 and 1.9, combined with immunotherapy, effectively modulate the tumour microenvironment in primary and secondary tumours, leading to reduced tumour growth and enhanced systemic immunity. Further investigation into these mechanisms could pave the way for improved combination therapies in advanced melanoma treatment.
Assuntos
Melanoma Experimental , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Microambiente Tumoral , Macrófagos Associados a Tumor , Animais , Melanoma Experimental/patologia , Melanoma Experimental/imunologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Reprogramação Celular/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Peptídeos/farmacologia , Linhagem Celular Tumoral , Antígeno CD47/metabolismoRESUMO
BACKGROUND: Interferon stimulated exonuclease gene 20 (ISG20) has been reported to be correlated with macrophage infiltration in glioblastoma (GBM) in previous bioinformatics-based studies. This study explores the exact effect of ISG20 on macrophage polarization in GBM. METHODS: ISG20 expression in GBM tissues and cells was determined by RT-qPCR and/or immunohistochemistry. GBM cells were co-cultured with M0 macrophages (PMA-stimulated THP-1 cells) in vitro, followed by flow cytometry and ELISA to analyze the M2 polarization of macrophages. Fluorescence-contained GBM cells were intracranially injected into nude mice along with M0 macrophages to generate orthotopic xenograft tumor models. Upstream regulator of ISG20 was predicted using bioinformatics. Loss- or gain-of-function assays of Fos like 2 (FOSL2) and ISG20 were performed in GBM cells. DNA methylation level of FOSL2 was analyzed by bisulfite sequencing analysis. RESULTS: ISG20 was found highly expressed in GBM tissues and cells. ISG20 silencing in GBM cells decreased CD206 and CD163 levels in the co-cultured macrophages and reduced secretion of IL-10 and TGF-ß. It also enhanced survival of nude mice bearing xenograft tumors, blocked tumor growth, and suppressed M2 polarization of macrophages in vivo. FOSL2, highly expressed in GBM, bound to the ISG20 promoter to activate its transcription. FOSL2 silencing similarly blocked M2 polarization of macrophages, which was negated by ISG20 overexpression. The high FOSL2 expression in GBM was attributed to DNA hypomethylation. CONCLUSION: This study demonstrates that FOSL2 is highly expressed in GBM due to DNA hypomethylation. It activates transcription of ISG20, thus promoting M2 polarization of macrophages and GBM development.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Macrófagos , Camundongos Nus , Animais , Humanos , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Exonucleases/metabolismo , Exonucleases/genética , Exorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismoRESUMO
Hyperplastic scar (HS) is an overreaction of tissue to skin injury caused by local fibroblast proliferation and excessive collagen production. Histone posttranslational modification patterns are important epigenetic processes that control various biological activities. This study was designed to investigate the effects of histone lactylation on HS and the underlying mechanism. Western blot was used to analyse the lactylation level in HS patients and fibroblasts (HSFs). In vitro experiments, western blot, cell counting kit-8, and immunofluorescence staining were performed to detect the collagen level, cell viability, and autophagy, respectively. The relationship between snai2 (SLUG) and phosphatase and tensin homologue (PTEN) was assessed by RNA immunoprecipitation and dual-luciferase reporter assays. The results showed that the histone lactylation level was upregulated in HS tissues and HSFs. HSFs showed increased collagen production and cell viability, and decreased autophagy. Silencing of lactate dehydrogenase A (LDHA) promoted the transcription of PTEN by inhibiting SLUG, thus promoting autophagy. Knockdown of LDHA inhibited collagen deposition and cell viability, and increased autophagy in HSFs, and the results were reversed after PTEN inhibition. In summary, histone lactylation inhibited the transcription activity of PTEN by promoting SLUG, thereby suppressing autophagy and promoting collagen deposition and cell viability of HSFs, which might provide effective therapeutic strategies in HS.
RESUMO
Beta-arrestin1 is a multifunctional protein critically involved in signal transduction. Recently, it is also identified as a nuclear transcriptional regulator, but the underlying mechanisms and physiological significance remain to be explored. Here, we identified beta-arrestin1 as an evolutionarily conserved protein essential for zebrafish development. Zebrafish embryos depleted of beta-arrestin1 displayed severe posterior defects and especially failed to undergo hematopoiesis. In addition, the expression of cdx4, a critical regulator of embryonic blood formation, and its downstream hox genes were downregulated by depletion of beta-arrestin1, while injection of cdx4, hoxa9a or hoxb4a mRNA rescued the hematopoietic defects. Further mechanistic studies revealed that beta-arrestin1 bound to and sequestered the polycomb group (PcG) recruiter YY1, and relieved PcG-mediated repression of cdx4-hox pathway, thus regulating hematopoietic lineage specification. Taken together, this study demonstrated a critical role of beta-arrestin1 during zebrafish primitive hematopoiesis, as well as an important regulator of PcG proteins and cdx4-hox pathway.
Assuntos
Arrestinas/metabolismo , Hematopoese , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição YY1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Proteínas do Grupo Polycomb , Fatores de Transcrição , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , beta-ArrestinasRESUMO
Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3ß phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.
Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Inositol/análogos & derivados , Humanos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Chaperona BiP do Retículo Endoplasmático , Miócitos Cardíacos , Estresse do Retículo Endoplasmático , Transdução de Sinais , Apoptose , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologiaRESUMO
Salt-inducible kinase 2 (SIK2) has been recognized as a potential target for anti-inflammation and anti-cancer therapy. In this paper, based on the binding pose of the reported compound (GLPG-3970, 3) with AlphaFold protein structure, a series of hinge cores were generated via AI-generative models (Chemistry42). After the molecular docking, synthesis, and biological evaluation, a hit molecule (7f) targeting SIK2 was obtained with a novel scaffold. Further SAR exploration led to the discovery of compound 8g with superior potency against SIK2 compared with the reported inhibitors. Furthermore, 8g also demonstrated excellent selectivity over other AMPK kinases, favorable in vitro ADMET profiles and decent cellular activities. This work provides an alternative approach to the discovery of novel and selective kinase inhibitors.
Assuntos
Inibidores de Proteínas Quinases , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/químicaRESUMO
PURPOSEOF REVIEW: The purpose of this review is to discuss the current understanding of the pegilodecakin (PEGylated interleukin 10) and its role in the inhibition of tumour growth and metastasis. This review also focuses on clinical data published to date that have evaluated the efficacy and safety of pegilodecakin. RECENT FINDINGS: Pegilodecakin has shown significant promise in preclinical models, notable for decreased tumour burden and fewer sites of metastatic disease across various malignancies. It has been most widely assessed in a phase I/Ib clinical trial against several solid tumours, leading to the phase II and III clinical trials containing pegilodecakin and its combination with other current treatments. However, the updated data have not shown higher efficacy in renal cell carcinoma, metastatic non-small cell lung cancer or pancreatic cancer, with respect to the controls, yet the adverse events presented more mixed results. Further investigation into combination therapies including pegilodecakin is ongoing. Pegilodecakin showed promise in preclinical and phase I clinical trials on its efficacy in several solid tumours, with expected regulation of IL-10 signalling pathway observed. However, the phase II and III trials did not justify its application as potential immunotherapy in selected cancers. Further evaluation of pegilodecakin's efficacy in other cancers, either as monotherapy or in combination with the current treatments, is worth investigating clinically, which warrants to better understand its potential clinical utility.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Interleucina-10/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia/métodos , Polietilenoglicóis/uso terapêutico , Neoplasias Renais/tratamento farmacológicoRESUMO
A facile multistage regulated strategy is reported to synthesize ZnCo-NC based carbon nanotubes including DMEA induced crystallization, Zn ion activation, and magnetic control growth of carbon nanotubes. Uniform Co distribution and the modulation of Zn, and their catalytic properties are carefully investigated by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. The surface contents of pyridinic N for the oxygen-reduction reaction (ORR) and the surface contents of CoNx and high valence Co for the oxygen-evolution reaction (OER) can be significantly modulated by Zn content in precursors and the sintering temperature. Furthermore, the catalyst also contains high specific surface areas, high porosity, and high electrochemical active surfaces. Therefore, the ZnCo-NC based catalyst exhibits outstanding bifunctional electrocatalytic activities for ORR with a high Eonset (1.02 V) and E1/2 (0.91 V) and OER with low Ej=10 (1.56 V), better than Pt/C and RuO2 . Importantly, the ZnCo-NC based Zn-H2 O2 batteries achieve the superior power density of 442 mW cm-2 , much higher than 238 and 198 mW cm-2 of Zn-air batteries with ZnCo-NC based catalyst and Pt/C respectively. More importantly, the high-power Zn-H2 O2 batteries can work well in underwater conditions while Zn-air batteries are out of work.
RESUMO
OBJECTIVE: The Australian snake venom ptFV (Pseudonaja textilis venom-derived factor V) variant retains cofactor function despite APC (activated protein C)-dependent proteolysis. Here, we aimed to unravel the mechanistic principles by determining the role of the absent Arg306 cleavage site that is required for the inactivation of FVa (mammalian factor Va). APPROACH AND RESULTS: Our findings show that in contrast to human FVa, APC-catalyzed proteolysis of ptFVa at Arg306 and Lys507 does not abrogate ptFVa cofactor function. Remarkably, the structural integrity of APC-proteolyzed ptFVa is maintained indicating that stable noncovalent interactions prevent A2-domain dissociation. Using Molecular Dynamics simulations, we uncovered key regions located in the A1 and A2 domain that may be at the basis of this remarkable characteristic. CONCLUSIONS: Taken together, we report a completely novel role for uniquely adapted regions in ptFVa that prevent A2 domain dissociation. As such, these results challenge our current understanding by which strict regulatory mechanisms control FVa activity.
Assuntos
Venenos Elapídicos/metabolismo , Fator Va/metabolismo , Proteína C/metabolismo , Animais , Linhagem Celular , Cricetinae , Venenos Elapídicos/química , Ativação Enzimática , Fator Va/química , Fator Va/genética , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Proteólise , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
BACKGROUND: Dietary fatty acids intake affects the composition of erythrocyte fatty acids, which is strongly correlated with glycolipid metabolism disorders. This study aimed at investigating the different effects of marine-derived and plant-derived omega-3 polyunsaturated fatty acid (n-3 PUFA) on the fatty acids of erythrocytes and glycolipid metabolism in patients with type 2 diabetes mellitus (T2DM). METHODS: The randomized double-blinded trial that was performed on 180 T2DM patients. The participants were randomly assigned to three groups for the six-month intervention. The participants were randomly assigned to three groups for the six-month intervention. The fish oil (FO) group was administered with FO at a dose of 3 g/day containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the perilla oil (PO) group was administered with PO at a dose of 3 g/day containing α-linolenic (ALA), the linseed and fish oil (LFO) group was administered with mixed linseed and fish oil at a dose of 3 g/day containing EPA, DHA and ALA. Demographic information were collected and anthropometric indices, glucose and lipid metabolism indexes, erythrocyte fatty acid composition were measured. Statistical analyses were performed using two-way ANOVA. RESULTS: A total of 150 patients finished the trial, with 52 of them in the FO group, 50 in the PO group and 48 in the LFO group. There were significant effects of time × treatment interaction on fast blood glucose (FBG), insulin, HOMA-IR and C-peptide, TC and triglyceride (TG) levels (P < 0.001). Glucose and C-peptide in PO and LFO groups decreased significantly and serum TG in FO group significantly decreased (P < 0.001) after the intervention. Erythrocyte C22: 5 n-6, ALA, DPA, n-6/n-3 PUFA, AA/EPA levels in the PO group were significantly higher than FO and LFO groups, while EPA, total n-3 PUFA and Omega-3 index were significantly higher in the FO and LFO groups compared to PO group. CONCLUSION: Supplementation with perilla oil decreased FBG while fish oil supplementation decreased the TG level. Marine-based and plant-based n-3 PUFAs exhibit different effects on fatty acid compositions of erythrocytes and regulated glycolipid metabolism. TRIAL REGISTRATION: This trial was recorded under Chinese Clinical Trial Registry Center (NO: ChiCTR-IOR-16008435 ) on May 28 2016.
Assuntos
Diabetes Mellitus Tipo 2/sangue , Eritrócitos/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos/sangue , Óleos de Peixe/uso terapêutico , Ácido alfa-Linolênico/uso terapêutico , Método Duplo-Cego , Dislipidemias/tratamento farmacológico , Eritrócitos/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óleos de Plantas/uso terapêuticoRESUMO
BACKGROUND: Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. While many patients survive, a portion of PTC cases display high aggressiveness and even develop into refractory differentiated thyroid carcinoma. This may be alleviated by developing a novel model to predict the risk of recurrence. Ferroptosis is an iron-dependent form of regulated cell death (RCD) driven by lethal accumulation of lipid peroxides, is regulated by a set of genes and shows a variety of metabolic changes. To elucidate whether ferroptosis occurs in PTC, we analyse the gene expression profiles of the disease and established a new model for the correlation. METHODS: The thyroid carcinoma (THCA) datasets were downloaded from The Cancer Genome Atlas (TCGA), UCSC Xena and MisgDB, and included 502 tumour samples and 56 normal samples. A total of 60 ferroptosis related genes were summarised from MisgDB database. Gene set enrichment analysis (GSEA) and Gene set variation analysis (GSVA) were used to analyse pathways potentially involving PTC subtypes. Single sample GSEA (ssGSEA) algorithm was used to analyse the proportion of 28 types of immune cells in the tumour immune infiltration microenvironment in THCA and the hclust algorithm was used to conduct immune typing according to the proportion of immune cells. Spearman correlation analysis was performed on the ferroptosis gene expression and the correlation between immune infiltrating cells proportion. We established the WGCNA to identify genes modules that are highly correlated with the microenvironment of immune invasion. DEseq2 algorithm was further used for differential analysis of sequencing data to analyse the functions and pathways potentially involving hub genes. GO and KEGG enrichment analysis was performed using Clusterprofiler to explore the clinical efficacy of hub genes. Univariate Cox analysis was performed for hub genes combined with clinical prognostic data, and the results was included for lasso regression and constructed the risk regression model. ROC curve and survival curve were used for evaluating the model. Univariate Cox analysis and multivariate Cox analysis were performed in combination with the clinical data of THCA and the risk score value, the clinical efficacy of the model was further evaluated. RESULTS: We identify two subtypes in PTC based on the expression of ferroptosis related genes, with the proportion of cluster 1 significantly higher than cluster 2 in ferroptosis signature genes that are positively associated. The mutations of Braf and Nras are detected as the major mutations of cluster 1 and 2, respectively. Subsequent analyses of TME immune cells infiltration indicated cluster 1 is remarkably richer than cluster 2. The risk score of THCA is in good performance evaluated by ROC curve and survival curve, in conjunction with univariate Cox analysis and multivariate Cox analysis results based on the clinical data shows that the risk score of the proposed model could be used as an independent prognostic indicator to predict the prognosis of patients with papillary thyroid cancer. CONCLUSIONS: Our study finds seven crucial genes, including Ac008063.2, Apoe, Bcl3, Acap3, Alox5ap, Atxn2l and B2m, and regulation of apoptosis by parathyroid hormone-related proteins significantly associated with ferroptosis and immune cells in PTC, and we construct the risk score model which can be used as an independent prognostic index to predict the prognosis of patients with PTC.
Assuntos
Carcinoma Papilar , Ferroptose , Neoplasias da Glândula Tireoide , Biomarcadores Tumorais , Carcinoma Papilar/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia , Prognóstico , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Microambiente TumoralRESUMO
Traumatic brain injury (TBI) has been a crucial health problem, with more than 50 million patients worldwide each year. Glymphatic system is a fluid exchange system that relies on the polarized water channel aquaporin-4 (AQP4) at the astrocytes, accounting for the clearance of abnormal proteins and metabolites from brain tissues. However, the dysfunction of glymphatic system and alteration of AQP4 polarization during the progression of TBI remain unclear. AQP4-/- and Wild Type (WT) mice were used to establish the TBI mouse model respectively. Brain edema and Evans blue extravasation were conducted 24 h post-injury to evaluate the acute TBI. Morris water maze (MWM) was used to establish the long-term cognitive functions of AQP4-/- and WT mice post TBI. Western-blot and qRT-PCR assays were performed to demonstrate protective effects of AQP4 deficiency to blood-brain barrier (BBB) integrity and amyloid-ß clearance. The inflammation of cerebral tissues post TBI was estimated by ELISA assay. AQP4 deficiency alleviated the brain edema and neurological deficit in TBI mice. AQP4-knockout led to improved cognitive outcomes in mice post TBI. The BBB integrity and cerebral amyloid-ß clearance were protected by AQP4 deficiency in TBI mice. AQP4 deficiency ameliorated the TBI-induced inflammation. AQP4 deficiency improved longer-term neurological outcomes in a mouse model of TBI.
Assuntos
Aquaporina 4/deficiência , Lesões Encefálicas Traumáticas/metabolismo , Neuroproteção/fisiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/complicações , Progressão da Doença , Sistema Glinfático/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos Knockout , Teste do Labirinto Aquático de Morris/fisiologiaRESUMO
For next-generation Internet-of-Everything applications, for example, artificial-neural-network image sensors, artificial retina, visible light communication, on-chip light interconnection, and flexible devices, etc., high-performance microscale photodetectors are in urgent demands. 2D material (2DM) photodetectors have been researched and demonstrated impressive performances. However, they have not met the demands in filterless narrowband photoresponse, wide linear dynamic range (LDR), ultralow dark current, and large on/off ratio, which are key performances for these applications. 2D Ruddlesden-Popper perovskites (2D-RPPs) are recently highlighted photovoltaic and optoelectronic materials. Embedding ultrathin 2D-RPPs into 2DM photodetectors holds potentials to improve these performances. Herein, a single-crystalline ultrathin (PEA)2 PbI4 is integrated into a vertical-stacked graphene-(PEA)2 PbI4 -graphene micro photoconductor (V-PEPI-PC). V-PEPI-PC exhibits narrowband photoresponses at 517 nm with a full-width-at-half-maximum of 15 nm and a wide LDR of 122 dB. Due to the multiple quantum wells in (PEA)2 PbI4 , V-PEPI-PC demonstrates an ultralow dark current of 1.1 × 10-14 A (44 pA mm-2 ), a high specific detectivity of 1.2 × 1013 Jones, and a high on/off ratio of 1.6 × 106 . Owing to the short vertical channel, V-PEPI-PC shows a fast response rise time of 486 µs. Therefore, the vertical-stacked photodetectors based on hybrid 2D-RPPs and 2DMs may have great potentials in future optoelectronics.
RESUMO
Phthalates have a history of reproductive toxicity in animal models and associations with adverse reproductive outcomes in women. Human exposure to dibutyl phthalate (DBP) occurs via consumer products (7-10 µg/kg/day) and medications (1-233 µg/kg/day). Most DBP toxicity studies have focused on high supraphysiological exposure levels; thus, very little is known about exposures occurring at environmentally relevant levels. CD-1 female mice (80 days old) were treated with tocopherol-stripped corn oil (vehicle control) or DBP dissolved in oil at environmentally relevant (10 and 100 µg/kg/day) or higher (1000 µg/kg/day) levels for 30 days to evaluate effects on DNA damage response (DDR) pathway genes and folliculogenesis. DBP exposure caused dose-dependent effects on folliculogenesis and gene expression. Specifically, animals exposed to the high dose of DBP had more atretic follicles in their ovaries, while in those treated with environmentally relevant doses, follicle numbers were no different from vehicle-treated controls. DBP exposure significantly reduced the expression of DDR genes including those involved in homologous recombination (Atm, Brca1, Mre11a, Rad50), mismatch repair (Msh3, Msh6), and nucleotide excision repair (Xpc, Pcna) in a dose-specific manner. Interestingly, staining for the DNA damage marker, γH2AX, was similar between treatments. DBP exposure did not result in differential DNA methylation in the Brca1 promoter but significantly reduced transcript levels for the maintenance DNA methyltransferase, Dnmt1, in the ovary. Collectively, these findings show that oral exposure to environmentally relevant levels of DBP for 30 days does not significantly impact folliculogenesis in adult mice but leads to aberrant ovarian expression of DDR genes.
Assuntos
Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Dibutilftalato/farmacologia , Disruptores Endócrinos/farmacologia , Poluentes Ambientais/farmacologia , Ovário/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Ovário/metabolismoRESUMO
BACKGROUND: Therapeutic vaccines against cervical cancer remain ineffective. Previously, we demonstrated that blocking the signalling of a cytokine, interleukin 10, at the time of immunisation elicited significantly higher numbers of antigen specific T cells and inhibited tumour growth in mice. RESULTS: In the current paper, we demonstrate, in a HPV16 E6/E7 transformed TC-1 tumour mouse model, that despite increased antigen specific T cell numbers, blocking IL-10 signalling at the time of immunisation does not increase the survival time of the TC-1 tumour bearing mice compared to mice receiving the same immunisation with no IL-10 signalling blockade. Moreover, the function of tumour infiltrating T cells isolated 3 weeks post TC-1 transplantation is more suppressed than those isolated 2 weeks after tumour inoculation. We demonstrate that synthesized caerin peptides, derived from amphibian skin secretions, 1) were able to inhibit TC-1 tumour growth both in vitro and in vivo; 2) are environmentally stable; and 3) promote the secretion of pro-inflammatory interlukine-6 by TC-1 cells. Notably caerin peptides were able to increase the survival time of TC-1 tumour bearing mice after therapeutic vaccination with a HPV16E7 peptide-based vaccine containing IL-10 inhibitor, via recruiting increased levels of T cells to the tumour site. CONCLUSION: Caerin peptides increase the efficacy of a therapeutic vaccine by recruiting more T cells to the tumour site.
Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Vacinas Anticâncer/uso terapêutico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Proteínas de Anfíbios/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Vacinas Anticâncer/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Interleucina-10/antagonistas & inibidores , Interleucina-6/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Linfócitos T/metabolismoRESUMO
BACKGROUND: Lettuce is a significant source of antioxidants and bioactive compounds. Nitrate is a cardinal fertilizer in horticulture and influences vegetable yield and quality; however, the negative effects of nitrate on the biosynthesis of flavonoids require further study. It is expected that using fertilizers containing organic nitrogen (N) could promote the synthesis of health-promoting compounds. RESULTS: Lettuces were hydroponically cultured in media containing 9 mmol L-1 nitrate or 9 mmol L-1 glycine for 4 weeks. Primary and secondary metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and ultra-performance liquid chromatography/ion mobility spectrometry/quadrupole time-of-flight mass spectrometry (UPLC/IMS/QTOF-MS). Data analysis revealed that 29 metabolites were significantly altered between nitrate and glycine treatments. Metabolites were tentatively identified by comparison with online databases, literature and standards and using collision cross-section values. Significant differences in flavonoid biosynthesis, phenolic biosynthesis and the tricarboxylic acid (TCA) cycle response were observed between N sources. Compared with nitrate, glycine promoted accumulation of glycosylated flavonoids (quercetin 3-glucoside, quercetin 3-(6â³-malonyl-glucoside), luteolin 7-glucuronide, luteolin 7-glucoside), ascorbic acid and amino acids (l-valine, l-leucine, l-glutamine, asparagine, l-serine, l-ornithine, 4-aminobutanoic acid, l-phenylalanine) but reduced phenolic acids (dihydroxybenzoic acid hexose isomers 1 and 2, chicoric acid, chicoric acid isomer 1) and TCA intermediates (fumaric, malic, citric and succinic acids). CONCLUSION: The novel methodology applied in this study can be used to characterize metabolites in lettuce. Accumulation of glycosylated flavonoids, amino acids and ascorbic acid in response to glycine supply provides strong evidence supporting the idea that using amino acids as an N source alters the nutritional value of vegetable crops. © 2017 Society of Chemical Industry.
Assuntos
Glicina/metabolismo , Lactuca/química , Lactuca/crescimento & desenvolvimento , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão , Fertilizantes/análise , Glicina/análise , Hidroponia , Lactuca/metabolismo , Espectrometria de Massas , Nitrogênio/análise , Nitrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Metabolismo SecundárioRESUMO
OBJECTIVE: We recently showed that host defense caerin peptides isolated from Australian frog tree were able to inhibit cervical cancer tumour cell growth in vitro. We wished to determine if radioactive isotope iodine-125 (125I) can be labeled to caerin 1.9 peptide and if this peptide is bioactive for breast cancer cells treatment. SUBJECTS AND METHODS: The biological function of caerin (1.1 and 1.9) peptides were investigated by in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. The anti-cancer effect of 125I labeled caerin 1.9 was compared with unlabeled caerin 1.9 peptide. The tissue distribution of 125I labeled caerin 1.9 peptide was further studied in mice. RESULTS: In the current paper, we demonstrated that caerin peptides (1.1 and 1.9) were separately able to inhibit the viability of two breast cancer cell lines in vitro and this inhibition was more profound when these peptides were simultaneously applied. Moreover, 125I can be stably attached to caerin 1.9 peptide with high efficiency. Iodine-125 labeled caerin 1.9 inhibited breast cancer cells line MCF-7 viability more efficiently than free 125I and also than unlabeled caerin 1.9. Additionally, iodine-125 labeled caerin 1.9 in vivo imaging demonstrated that although slightly, it could be accumulated in tumor tissue. CONCLUSION: Our results from this totally original study indicated that radioactive isotope 125I labeled to caerin peptide 1.9 may be used to treat breast cancer while at the same time the response to treatment may be monitored by simultaneous imaging.
Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Neoplasias da Mama/radioterapia , Radioisótopos do Iodo/uso terapêutico , Sequência de Aminoácidos , Proteínas de Anfíbios/farmacocinética , Animais , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica , Feminino , Humanos , Marcação por Isótopo , Células MCF-7 , Camundongos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição TecidualRESUMO
BACKGROUND: Cancer therapeutic vaccine induced cytotoxic T cell (CTL) responses are pivotal for the killing of tumour cells. Blocking interleukin 10 (IL-10) signalling at the time of immunization increases vaccine induced CTL responses and improves prevention of tumour growth in animal models compared to immunization without an IL-10 signalling blockade. Therefore, this immunization strategy may have potential to curtail cancer in a clinical setting. However, IL-10 deficiency leads to autoimmune disease in the gut. Blocking IL-10 at the time of immunization may result in unwanted side effects, especially immune-pathological diseases in the intestine. METHODS: We investigated whether blocking IL-10 at the time of immunization results in intestinal inflammation responses in a mouse TC-1 tumour model and in a NOD autoimmune disease prone mouse model. RESULTS: We now show that blocking IL-10 at the time of immunization increases IL-10 production by CD4+ T cells in the spleen and draining lymph nodes, and does not result in blood cell infiltration to the intestines leading to intestinal pathological changes. Moreover, immunization with papillomavirus like particles combined with simultaneously blocking IL-10 signalling does not increase the incidence of autoimmune disease in Non-obese diabetic (NOD) mice. CONCLUSIONS: Our results indicate that immunization with an IL-10 inhibitor may facilitate the generation of safe, effective therapeutic vaccines against chronic viral infection and cancer.