Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 17(11): 1641-1656, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702986

RESUMO

Reprogramming of somatic cells to induced pluripotent stem cells rewrites the code of cell fate at the chromatin level. Yet, little is known about this process physically. Here, we describe a fluorescence recovery after photobleaching method to assess the dynamics of heterochromatin/euchromatin and show significant heterochromatin loosening at the initial stage of reprogramming. We identify growth arrest and DNA damage-inducible protein a (Gadd45a) as a chromatin relaxer in mouse embryonic fibroblasts, which also enhances somatic cell reprogramming efficiency. We show that residue glycine 39 (G39) in Gadd45a is essential for interacting with core histones, opening chromatin and enhancing reprogramming. We further demonstrate that Gadd45a destabilizes histone-DNA interactions and facilitates the binding of Yamanaka factors to their targets for activation. Our study provides a method to screen factors that impact on chromatin structure in live cells, and identifies Gadd45a as a chromatin relaxer.


Assuntos
Proteínas de Ciclo Celular/genética , Reprogramação Celular , Heterocromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Nucleares/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Reprogramação Celular/genética , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Glicina/metabolismo , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Fotodegradação
2.
Stem Cells ; 34(1): 83-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26388522

RESUMO

Somatic cell reprogramming is accompanied by changes in lipid metabolism. While attempting to dissect the molecular mechanisms of the lipid metabolic switch during reprogramming, we found that overexpression of sterol regulatory element binding protein-1 (Srebp-1), a transcriptional factor required for lipid homeostasis, enhances reprogramming efficiency, while knockdown or pharmaceutical inhibition of Srebp-1 is inhibitory. Srebp-1 overexpression blocks the formation of partially reprogrammed cells, and functions in the early phase of reprogramming. Furthermore, Srebp-1 functions in nucleus and depends on its transcriptional activity but not its ability to bind the E-box motif and regulation of canonical targets. Mechanistically, Srebp-1 interacts with c-Myc, facilitates its binding to downstream pluripotent targets, strengthens the function of c-Myc in enhancing other Yamanaka factors' binding, and thereby promotes the expression of pluripotent genes. These results elucidate a novel role for Srebp-1 in somatic cell reprogramming and provide insights into understanding the metabolic switch during reprogramming.


Assuntos
Reprogramação Celular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Reprogramação Celular/genética , Regulação da Expressão Gênica , Camundongos , Células-Tronco Pluripotentes/metabolismo , Ligação Proteica
3.
ACS Nano ; 18(33): 22055-22070, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116283

RESUMO

The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination. The phenolic OH containing CDs derived from honeysuckle (HOCD) and dandelion (DACD) demonstrated appropriate redox potentials, ensuring their ability to scavenge cytotoxic ROS such as ·OH and ONOO-, while invalidity toward essential ones such as O2·-, H2O2, and NO. This enables efficient treatment of chronic inflammation without affecting essential ROS signal pathways. The surface C-N/C═N of CDs derived from taxus leaves (TACD) and DACD renders them with suitable band structures, facilitating absorption in the red region and efficient generation of O2·- upon light irradiation for sterilization. Specifically, the facilely prepared DACD demonstrates fascinating dynamic ROS modulating ability, making it highly suitable for addressing concurrent chronic inflammation and infection, such as diabetic wound infection. This dynamic ROS regulation strategy facilitates the realization of the precise and efficient treatment of chronic inflammation and infection with minimal side effects, holding immense potential for clinical practice.


Assuntos
Carbono , Inflamação , Pontos Quânticos , Espécies Reativas de Oxigênio , Carbono/química , Carbono/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Animais , Camundongos , Pontos Quânticos/química , Humanos , Células RAW 264.7 , Propriedades de Superfície
4.
Biochem Biophys Res Commun ; 431(4): 767-71, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23333381

RESUMO

Induced pluripotent stem cells (iPSCs) hold great clinical potential for regenerative medicine. Much work has been done to investigate the mechanisms of their generation, focusing on the cell nucleus. However, the roles of specific organelles and in particular mitochondria in the potential mechanisms of nuclear reprogramming remain unclear. In this study, we sought to determine the role of mitochondrial metabolism transition in nuclear reprogramming. We found that the mitochondrial cristae had remodeled in iPSCs. The efficiency of iPSC generation was significantly reduced by down-regulation of mitochondrial inner membrane protein (IMMT), which regulates the morphology of mitochondrial cristae. Moreover, cells with the oxidative phosphorylation (OXPHOS) advantage had higher reprogramming efficiency than normal cells and the glycolysis intermediate lactic acid enhanced the efficiency of iPSCs generation. Our results show that the remodeling of mitochondrial cristae couples with the generation of iPSCs, suggesting mitochondrial metabolism transition plays an important role in nuclear reprogramming.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Animais , Glicólise , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Camundongos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosforilação Oxidativa
5.
Polymers (Basel) ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817766

RESUMO

The anti-cracking properties of polymer-modified asphalt depend largely on the molecular structure of the polymer modifier. However, the mysterious structure-performance relationship is still elusive. In this paper, three kinds of polymers with different chain structures were selected to address this issue. The indices of styrene, trans-butadiene, aliphatic branched-chain, and aliphatic long-chain from the infrared spectrum were used to quantify the functional group compositions of polymer modifiers. Viscoelastic parameters, including relaxation time, dissipation energy ratios, and stiffness were assessed to illustrate the anti-cracking properties of polymer-modified asphalt. Results showed that relaxation time and dissipation energy ratios were mainly determined by the polymer network strength, molecular size, aliphatic chain feature, and the orientations speed of aliphatic chains. The short relaxation time and high dissipation ratio lead to the low stiffness and favorable low-temperature performance of asphalt. The improvement of these performances requires a polymer with high indices of an aliphatic long-chain, styrene, aliphatic branched-chain, and trans-butadiene, respectively. An aliphatic-long chain, aliphatic branched-chain, and trans-butadiene were soft segments in asphalt while styrene was the rigid segment. The soft segments affect the intramolecular friction, orientation, and thermal motion at low temperatures, whereas the rigid segment enhances the strength of polymer networks. Thus, the anti-cracking property of polymer-modified asphalt can be improved by adjusting the ratio of soft and rigid segments in the polymer modifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA