Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genet Epidemiol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644517

RESUMO

The genome-wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type-I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective-risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption-free model built upon data-consistent inversion (DCI), which is a recently developed measure-theoretic framework utilized for uncertainty quantification. This proposed DCI-derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI-derived model to cover all genetic variants without emphasizing on additivity of the classic-GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type-I error rate at least as well as the classic-GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.

2.
Nano Lett ; 24(31): 9435-9441, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39045863

RESUMO

Dual-ion batteries (DIBs) are becoming an important technology for energy storage. To overcome the disadvantages of traditional electrodes and electrolytes, here we assemble a dual-carbon DIB with nanodiamond (ND)-modified crimped graphene (DCG) and electrolyte. The DCG anode and cathode realize high capacities of 1121 mA h g-1 and 149 mA h g-1, respectively, at 0.1 A g-1. The corresponding DCG//DCG full cells present a high capacity of 143 mA h g-1 at 1 A g-1 after 3300 cycles, which is superior to most reported results. Achieving these record performances is strongly dependent on the formed DCG electrodes with expanded interlayer spacing and abundant active sites, and NDs dispersed in DCG and electrolytes are very helpful for enhancing the storage of both cations and anions, effectively suppressing the irreversible decomposition of electrolytes. This work breaks through the bottleneck of graphitic-based DIBs, paving the way for realizing high-performance DIBs applied in industry.

3.
Small ; : e2402862, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888118

RESUMO

Lithium-sulfur (Li-S) batteries are expected to be the next-generation energy storage system due to the ultrahigh theoretical energy density and low cost. However, the notorious shuttle effect of higher-order polysulfides and the uncontrollable lithium dendrite growth are the two biggest challenges for commercially viable Li-S batteries. Herein, these two main challenges are solved by in situ polymerization of bi-functional gel polymer electrolyte (GPE). The initiator (SiCl4) not only drives the polymerization of 1,3-dioxolane (DOL) but also induces the construction of a hybrid solid electrolyte interphase (SEI) with inorganic-rich compositions on the Li anode. In addition, diatomaceous earth (DE) is added and anchored in the GPE to obtain PDOL-SiCl4-DE electrolyte through in situ polymerization. Combined with density functional theory (DFT) calculations, the hybrid SEI provides abundant adsorption sites for the deposition of Li+, inhibiting the growth of lithium dendrites. Meanwhile, the shuttle effect is greatly alleviated due to the strong adsorption capacity of DE toward lithium polysulfides. Therefore, the Li/Li symmetric cell and Li-S full cell assembled with PDOL-SiCl4-DE exhibit excellent cycling stability. This study offers a valuable reference for the development of high performance and safe Li-S batteries.

4.
Langmuir ; 40(28): 14623-14632, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38966998

RESUMO

The toxic gases emitted from industrial production have caused significant damage to the environment and human health, necessitating efficient gas sensors for their detection and removal. In this work, first-principles calculations are employed to investigate the potential application of diamanes for high-performance toxic gas sensors. The results show that nine gas molecules (CO, CO2, NO, NO2, NH3, SO2, N2, O2, and H2O) are physisorbed on pristine diamane by weak van der Waals interactions. After introducing H/F defects, diamane can effectively capture specific toxic gases (CO, NO, NO2, and SO2) in the presence of interfering gases (N2, O2, and H2O), suggesting excellent selectivity and anti-interference ability. Orbital hybridization and significant charge redistribution between gas molecules and defective diamane dominate the enhanced adsorbate-substrate interactions. More importantly, the high sensitivity and good reversibility of defective diamane for detecting CO, NO, and SO2 molecules enable its reuse as a superior resistance-type gas sensor. Our calculations provide valuable insights into the potential of defective diamane for detecting toxic gases and shed light on the practical application of novel carbon-based materials in the gas-sensing field.

5.
Physiol Plant ; 176(4): e14411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973028

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Assuntos
Arabidopsis , Bacillus licheniformis , Etilenos , Poliaminas , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Etilenos/metabolismo , Poliaminas/metabolismo , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Plântula/metabolismo , Álcalis/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38700591

RESUMO

PURPOSE: To identify the types of viral infection in aqueous humor (AqH) among patients diagnosed as Fuchs uveitis syndrome (FUS) or Posner-Schlossman syndrome (PSS) and investigate their relevance to clinical manifestations and visual outcome. METHODS: A total of 375 patients and 171 patients were diagnosed as FUS or PSS in our department. AqH and serum samples from 68 FUS patients and 16 PSS patients were obtained during eye surgery. The viral etiologies, clinical features, auxiliary tests and visual prognosis of patients with FUS or PSS who underwent AqH analysis were analysed and compared. RESULTS: Among 68 FUS patients, rubella virus (RV), cytomegalovirus (CMV), herpes simplex virus (HSV) and varicella-zoster virus were identified in 17, 11, 1 and 1 patients, respectively. Seven patients with CMV and 1 with HSV were identified in 16 PSS patients. In both FUS and PSS groups, virus-associated eyes had higher proportion of secondary glaucoma and worse visual prognosis as compared with non-virus-associated eyes (all P < 0.05). In FUS group, specifically, CMV infection manifested as more obvious anterior segment inflammation and lower corneal endothelial cell density (CECD). RV infection showed a higher percentage of vitritis. In PSS group, CMV-associated PSS had a lower retinal nerve fiber layer thickness and CECD, worse visual prognosis as compared with non-virus-associated PSS (all P < 0.05). CONCLUSION: Our study identified 4 types of viral infection in FUS and 2 types of viral infection in PSS. Virus-associated patients are usually associated with more obvious clinical signs and poor visual prognosis.

7.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139082

RESUMO

Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.


Assuntos
Apoptose , Grelina , Grelina/farmacologia , Grelina/metabolismo , Piroptose , Transdução de Sinais , Autofagia
8.
Chem Sci ; 15(19): 7150-7159, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756810

RESUMO

An oxidative strategy for the preparation of dihydrobenzofurans via heterogeneous photocatalysis is reported. This method leverages the surface interaction between the alkenyl phenol and the TiO2 solid surface, which enables direct activation by visible light without the need for pre-functionalization or surface modification. The resulting alkenyl phenoxyl radical is proposed to be selectively captured by a neutral phenol nucleophile, rendering ß-5' coupling with excellent chemo- and regio-selectivity. The reaction proceeds under benign conditions, using an inexpensive, nontoxic, and recyclable photocatalyst under visible light irradiation with air as the terminal oxidant at room temperature.

9.
Chem Commun (Camb) ; 60(13): 1754-1757, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38249109

RESUMO

Backbone-enabled site-selective modification of peptides with benzoquinone via Pd-catalyzed δ-C(sp2)-H functionalization has been achieved. The amide groups of peptides serve as internal directional groups, facilitating C-H functionalization through a kinetically less favored six-membered palladacycle. This methodology presents novel opportunities for the late-stage site-selective diversification of peptides.

10.
Front Neurol ; 15: 1415792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055317

RESUMO

Background: The lower limb motor dysfunction caused by stroke is one of the main sequelae affecting patients' ability to live normally in the later period. Acupuncture treatment of limb movement dysfunction after stroke has been recommended by authoritative guidelines for reducing limb spasticity, enhancing limb strength and so on. However, the efficacy of different acupuncture methods in treating lower limb motor dysfunction after stroke remains controversial. Objective: In this paper, network meta-analysis (NMA) was used to prioritize various acupuncture intervention combinations commonly used in clinical practice, try to screen the acupuncture intervention scheme with the highest clinical efficacy and safety, and explore its rationality in guiding clinical practice. Methods: We searched a total of 4,312 studies from 8 databases and 2 clinical trial registries, and selected 43 articles for systematic review. We used pairwise meta-analysis and network meta-analysis to evaluate the efficacy and ranking of various acupuncture interventions. At the same time, the risk of bias, publication bias, and sensitivity of included randomized controlled trials were analyzed. The main outcome indicator was Fugl-Meyer assessment of lower extremity (FMA-LE), and the secondary outcome indicators were Modified Barthel Index (MBI), Berg balance scale (BBS) and Modified Ashworth scale (MAS). Results: A total of 4,134 patients in 43 studies were included. The intervention included 9 acupuncture-related treatments, of which 20.9% were classified as high-risk. Among the four outcome indicators in pairwise meta-analysis, the effect of body acupuncture combined with conventional rehabilitation has the highest comprehensive credibility in terms of efficacy and safety comparing with conventional rehabilitation [SMD = 1.14, 95%CI (0.81, 1.46)], [SMD = 1.35, 95%CI (0.97, 1.72)], [SMD = 1.22, 95%CI (0.39, 2.05)], [SMD = 1.21, 95%CI (0.74, 1.44)]. In addition, multiple intervention methods, for example, warm acupuncture plus rehabilitation treatment for MBI and electroacupuncture plus body acupuncture plus rehabilitation treatment for BBS, may increase certain additional effects on different outcome indicators. Conclusion: This study proves that body acupuncture combined with rehabilitation treatment is the most widely used intervention method with the highest evidence quality in the treatment of lower limb motor dysfunction after stroke. However, for some other acupuncture methods, large samples and high-quality clinical randomized controlled trials are still needed to be fully verified.

11.
Neuroimage Clin ; 43: 103636, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38950504

RESUMO

The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.

12.
Transl Stroke Res ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678526

RESUMO

Excessive inflammatory response following ischemic stroke (IS) injury is a key factor affecting the functional recovery of patients. The efferocytic clearance of apoptotic cells within ischemic brain tissue is a critical mechanism for mitigating inflammation, presenting a promising avenue for the treatment of ischemic stroke. However, the cellular and molecular mechanisms underlying efferocytosis in the brain after IS and its impact on brain injury and recovery are poorly understood. This study explored the roles of inflammation and efferocytosis in IS with bioinformatics. Three Gene Expression Omnibus Series (GSE) (GSE137482-3 m, GSE137482-18 m, and GSE30655) were obtained from NCBI (National Center for Biotechnology Information) and GEO (Gene Expression Omnibus). Differentially expressed genes (DEGs) were processed for GSEA (Gene Set Enrichment Analysis), GO (Gene Ontology Functional Enrichment Analysis), and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses. Efferocytosis-related genes were identified from the existing literature, following which the relationship between Differentially Expressed Genes (DEGs) and efferocytosis-related genes was examined. The single-cell dataset GSE174574 was employed to investigate the distinct expression profiles of efferocytosis-related genes. The identified hub genes were verified using the dataset of human brain and peripheral blood sample datasets GSE56267 and GSE122709. The dataset GSE215212 was used to predict competing endogenous RNA (ceRNA) network, and GSE231431 was applied to verify the expression of differential miRNAs. At last, the middle cerebral artery (MCAO) model was established to validate the efferocytosis process and the expression of hub genes. DEGs in two datasets were significantly enriched in pathways involved in inflammatory response and immunoregulation. Based on the least absolute shrinkage and selection operator (LASSO) analyses, we identified hub efferocytosis-related genes (Abca1, C1qc, Ptx3, Irf5, and Pros1) and key transcription factors (Stat5). The scRNA-seq analysis showed that these hub genes were mainly expressed in microglia and macrophages which are the main cells with efferocytosis function in the brain. We then identified miR-125b-5p as a therapeutic target of IS based on the ceRNA network. Finally, we validated the phagocytosis and clearance of dead cells by efferocytosis and the expression of hub gene Abca1 in MCAO mice models.

13.
ChemSusChem ; : e202400840, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924365

RESUMO

Unfavorable parasitic reactions between the Ni-rich layered oxide cathode and the sulfide solid electrolyte have plagued the realization of all-solid-state rechargeable Li batteries. The accumulation of inactive by-products (P2Sx, S, POx n- and SOx n-) at the cathode-sulfide interface impedes fast Li-ion transfer, which accounts for sluggish reaction kinetics and significant loss of cathode capacity. Herein, we proposed an easily scalable approach to stabilize the cathode electrochemistry via coating the cathode particles by a uniform, Li+-conductive plastic-crystal electrolyte nanolayer on their surface. The electrolyte, which simply consists of succinonitrile and Li bis(trifluoromethanesulphonyl)imide, serves as an interfacial buffer to effectively suppress the adverse phase transition in highly delithiated cathode materials, and the loss of lattice oxygen and generation of inactive oxygenated by-products at the cathode-sulfide interface. Consequently, an all-solid-state rechargeable Li battery with the modified cathode delivers high specific capacities of 168 mAh g-1 at 0.1 C and a high capacity retention >80 % after 100 cycles. Our work sheds new light on rational design of electrode-electrolyte interface for the next-generation high-energy batteries.

14.
ACS Nano ; 18(11): 8463-8474, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451076

RESUMO

All-solid-state lithium-sulfur batteries (ASSLSBs) have attracted wide attention due to their ultrahigh theoretical energy density and the ability of completely avoiding the shuttle effect. However, the further development of ASSLSBs is limited by the poor kinetic properties of the solid electrode interface. It remains a great challenge to achieve good kinetic properties, by common strategies to substitute sulfur-transition metal and organosulfur composites for sulfur without reducing the specific capacity of ASSLSBs. In this study, a sulfur-(Ketjen Black)-(bistrifluoromethanesulfonimide lithium salt) (S-KB-LiTFSI) composite is constructed by introducing LiTFSI into the S-KB composite. The initial discharge capacity reaches up to 1483 mA h g-1, benefited from the improved ionic conductivity and diffusion kinetics of the S-KB-LiTFSI composite, where numerous LiF interphases with a Li3N component are in situ formed during cycling. Combined with DFT calculations, it is found that the migration barriers of LiF and Li3N are much smaller than that of the Li6PS5Cl solid electrolyte. The fast ionic conductors of LiF and Li3N not only enhance the Li+ transfer efficiency but also improve the interfacial stability. Therefore, the assembled ASSLSBs operate stably for 600 cycles at 200 mA g-1, and this study provides an effective strategy for the further development of ASSLSBs.

15.
Adv Mater ; 36(30): e2312812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839075

RESUMO

High-performance lithium metal anodes are crucial for the development of advanced Li metal batteries. Herein, this work reports a novel plasma coupled electrolyte additive strategy to prepare high-quality composite solid electrolyte interphase (SEI) on Li metal to achieve enhanced performance and stability. With the guidance of calculations, this work selects diethyl dibromomalonate (DB) as an additive to optimize the solvation structure of electrolytes to modify the SEI. Meanwhile, this work groundbreakingly develops DB plasma technology coupled with DB electrolyte additive to construct a combinatorial SEI: inner plasma-induced SEI layer composed of LiBr and Li2CO3 plus additive-reduced SEI containing LiBr/Li2CO3/organic lithium compounds as an outer compatible layer. The optimized hybrid SEI has strong affinity toward Li+ and good mechanical properties, thereby inducing horizontal dispersion and uniform deposition of Li+ and keep structure stable. Accordingly, the symmetrical cells exhibit enhanced cycling stability for 1200 h at an overpotential of 23.8 mV with average coulombic efficiency (99.51%). Additionally, the full cells with LiNi0.8Co0.1Mn0.1O2 cathode deliver a capacity retention of 81.7% after 300 cycles at 0.5 C, and the pouch cell achieves a volumetric specific energy of ≈664 Wh L‒1. This work provides new enlightenment on plasma technology for fabrication of advanced metal anodes for energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA