Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(2): 1487-1502, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38153400

RESUMO

Polymer brushes have witnessed extensive utilization and progress, driven by their distinct attributes in surface modification, tethered group functionality, and tailored interactions at the nanoscale, enabling them for various scientific and industrial applications of coatings, sensors, switchable/responsive materials, nanolithography, and lab-on-a-chips. Despite the wealth of experimental investigations into polymer brushes, this review primarily focuses on computational studies of antifouling polymer brushes with a strong emphasis on achieving a molecular-level understanding and structurally designing antifouling polymer brushes. Computational exploration covers three realms of thermotical models, molecular simulations, and machine-learning approaches to elucidate the intricate relationship between composition, structure, and properties concerning polymer brushes in the context of nanotribology, surface hydration, and packing conformation. Upon acknowledging the challenges currently faced, we extend our perspectives toward future research directions by delineating potential avenues and unexplored territories. Our overarching objective is to advance our foundational comprehension and practical utilization of polymer brushes for antifouling applications, leveraging the synergy between computational methods and materials design to drive innovation in this crucial field.

2.
Cell Mol Life Sci ; 81(1): 5, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085330

RESUMO

SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.


Assuntos
Neoplasias , Síndrome de Noonan , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Síndrome de Noonan/genética , Mutação/genética , Neoplasias/genética , Domínios de Homologia de src/genética , Fenótipo
3.
Cell Mol Life Sci ; 79(5): 281, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508574

RESUMO

MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1's role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.


Assuntos
Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Trifosfato de Adenosina/metabolismo , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais
4.
Angew Chem Int Ed Engl ; 62(27): e202304367, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37156725

RESUMO

The photo-responsive adsorption has emerged as a vibrant area, but its current methodology is limited by the well-defined photochromic units and their molecular deformation driven by photo-stimuli. Herein, a methodology of nondeforming photo-responsiveness is successfully exploited. With the exploiting agent of Cu-TCPP framework assembled on the graphite and strongly interacted with it, the sorbent generates two kinds of adsorption sites, over which the electron density distribution of the graphite layer can be modulated at the c-axis direction, which can further evolve due to photo-stimulated excited states. The excited states are stable enough to meet the timescale of microscopic adsorption equilibrium. Independent of the ultra-low specific surface area of the sorbent (20 m2 g-1 ), the CO adsorption capability can be improved from 0.50 mmol g-1 at the ground state to 1.24 mmol g-1 (0 °C, 1 bar) with the visible light radiation, rather than the photothermal desorption.

5.
Biophys J ; 121(12): 2251-2265, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35651316

RESUMO

BCR-ABL drives chronic myeloid leukemia (CML). BCR binding to GRB2 transduces signaling via the Ras/MAPK pathway. Despite considerable data confirming the binding, molecular-level understanding of exactly how the two proteins interact, and, especially, what are the determinants of the specificity of the SH2GRB2 domain-phosphorylated BCR (pBCR) recognition are still open questions. Yet, this is vastly important for understanding binding selectivity, and for predicting the phosphorylated receptors, or peptides, that are likely to bind. Here, we uncover these determinants and ascertain to what extent they relate to the affinity of the interaction. Toward this end, we modeled the complexes of the pBCR and SH2GRB2 and other pY/Y-peptide-SH2 complexes and compared their specificity and affinity. We observed that pBCR's 176FpYVNV180 motif is favorable and specific to SH2GRB2, similar to pEGFR, but not other complexes. SH2GRB2 contains two binding pockets: pY-binding recognition pocket triggers binding, and the specificity pocket whose interaction is governed by N179 in pBCR and W121 in SH2GRB2. Our proposed motif with optimal affinity to SH2GRB2 is E/D-pY-E/V-N-I/L. Collectively, we provide the structural basis of BCR-ABL recruitment of GRB2, outline its specificity hallmarks, and delineate a blueprint for prediction of BCR-binding scaffolds and for therapeutic peptide design.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/metabolismo , Proteína Adaptadora GRB2/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Peptídeos/metabolismo , Domínios de Homologia de src
6.
Langmuir ; 36(11): 2757-2766, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32118448

RESUMO

Antifouling materials and coatings have broad fundamental and practical applications. Strong hydration at polymer surfaces has been proven to be responsible for their antifouling property, but molecular details of interfacial water behaviors and their functional roles in protein resistance remain elusive. Here, we computationally studied the packing structure, surface hydration, and protein resistance of four poly(N-hydroxyalkyl acrylamide) (PAMs) brushes with different carbon spacer lengths (CSLs) using a combination of molecular mechanics (MM), Monte Carlo (MC), and molecular dynamics (MD) simulations. The packing structure of different PAM brushes were first determined and served as a structural basis for further exploring the CSL-dependent dynamics and structure of water molecules on PAM brushes and their surface resistance ability to lysozyme protein. Upon determining an optimal packing structure of PAMs by MM and optimal protein orientation on PAMs by MC, MD simulations further revealed that poly(N-hydroxymethyl acrylamide) (pHMAA), poly(N-(2-hydroxyethyl)acrylamide) (pHEAA), and poly(N-(3-hydroxypropyl)acrylamide) (pHPAA) brushes with shorter CSLs = 1-3 possessed a much stronger binding ability to more water molecules than a poly(N-(5-hydroxypentyl)acrylamide) (pHPenAA) brush with CSL = 5. Consequently, CSL-induced strong surface hydration on pHMAA, pHEAA, and pHPAA brushes led to high surface resistance to lysozyme adsorption, in sharp contrast to lysozyme adsorption on the pHPenAA brush. Computational studies confirmed the experimental results of surface wettability and protein adsorption from surface plasmon resonance, contact angle, and sum frequency generation vibrational spectroscopy, highlighting that small structural variation of CSLs can greatly impact surface hydration and antifouling characteristics of antifouling surfaces, which may provide structural-based design guidelines for new and effective antifouling materials and surfaces.

7.
Langmuir ; 35(9): 3576-3584, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721070

RESUMO

Surface hydration has been proposed as the key antifouling mechanism of antifouling materials. However, molecular-level details of the structure, dynamics, and interactions of interfacial water around antifouling polymers still remain elusive. In this work, using all-atom molecular dynamics (MD) simulations, we studied four different acrylamides (AMs) for their interfacial water behaviors and their interactions with a protein, with special attention to the effect of carbon spacer lengths (CSLs) on the hydration properties of AMs. Collective MD simulation data revealed that although all four AMs displayed strong hydration, N-hydroxymethyl acrylamide (HMAA) and N-(2-hydroxyethyl)acrylamide (HEAA) with shorter CSLs displayed a longer residence time, slower self-diffusion, and lower coordination number of interfacial water molecules than N-(3-hydroxypropyl)acrylamide (HPAA) and N-(5-hydroxypentyl)-acrylamide (HPenAA) with longer CSLs. The shorter CSLs allow water molecules to form bridging hydrogen bonds with different hydrophilic groups in the same AM chain, thus enhancing the hydration capacity of AMs. Consequently, different from HPenAA, which had a weak but detectable interaction with the protein, HMAA, HEAA, and HPAA had almost zero interactions with the protein. This computational work provides a better fundamental understanding of the surface hydration and protein interaction of different AMs with subtle structural changes from structural, dynamic, and energy aspects at the atomic level, which hopefully will guide the design of new and effective nonfouling materials.

8.
Langmuir ; 33(49): 13964-13972, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29160706

RESUMO

The rational design of biomaterials with antifouling properties still remains a challenge, although this is important for many bench-to-bedside applications for biomedical implants, drug delivery carriers, and marine coatings. Herein, we synthesized and characterized poly(N-acryloylglycinamide) (polyNAGA) and then grafted poly(NAGA) onto Au substrate to form polymer brushes with well-controlled film stability, wettability, and thickness using surface-initiated atom transfer radical polymerization (SI-ATRP). The NAGA monomer integrates two hydrophilic amides on the side chain to enhance surface hydration, which is thought as a critical contributor to its antifouling property. The antifouling performances of poly(NAGA) brushes of different film thicknesses were then rigorously assessed and compared using protein adsorption assay from undiluted blood serum and plasma, cell-adhesive assay, and bacterial assay. The resulting poly(NAGA) brushes with a film thickness of 25-35 nm exhibited excellent in vitro antifouling ability to prevent unwanted protein adsorption (<0.3 ng/cm2) and bacterial and cell attachments up to 3 days. Molecular dynamics (MD) simulations further showed that two hydrophilic amide groups can interact with water molecules strongly to form a strong hydration layer via coordinated hydrogen bonds. This confirms a positive correlation between antifouling property and surface hydration. In line with a series of polyacrylamides and polyacrylates as antifouling materials synthesized in our lab, we propose that small structural changes in the pendent groups of polymers could largely improve the antifouling capacity, which may be used as a general design rule for developing next-generation antifouling materials.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(1): 196-204, 2014 Feb.
Artigo em Zh | MEDLINE | ID: mdl-24804511

RESUMO

The beta-secretase is one of prospective targets against Alzheimer's disease (AD). A three-dimensional quan titative structure-activity relationship (3D-QSAR) model of Hydroethylamines (HEAs) as beta-secretase inhibitors was established using Topomer CoMFA. The multiple correlation coefficient of fitting, cross validation and external validation were r2 = 0.928, q(loo)2 = 0.605 and r(pred)2 = 0.626, respectively. The 3D-QSAR model was used to search R groups from ZINC database as the source of structural fragments. As a result, a series of R groups with relatively high activity contribution was obtained to design a total of 15 new compounds, with higher activity than that of the template molecule. The molecular docking was employed to study the interaction mode between the new compounds as ligands and beta-secretase as receptors, displaying that hydrogen bond and hydrophobicity played important roles in the binding affinity between the new compounds and beta-secretase. The results showed that Topomer CoMFA and To pomer Search could be effectively used to screen and design new molecules of HEAs as beta-secretase inhibitors, and the designed compounds could provide new candidates for drug design targeting AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Desenho de Fármacos , Simulação de Acoplamento Molecular , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Relação Quantitativa Estrutura-Atividade
10.
J Phys Chem B ; 128(21): 5175-5187, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38747619

RESUMO

SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.


Assuntos
Receptores ErbB , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína p120 Ativadora de GTPase , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Fosforilação , Proteína p120 Ativadora de GTPase/metabolismo , Proteína p120 Ativadora de GTPase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Ligação Proteica , Sítios de Ligação
11.
Sci Adv ; 10(27): eadm9211, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968359

RESUMO

Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.


Assuntos
Ciclo Celular , Diferenciação Celular , Transdução de Sinais , Humanos , Animais , Mitógenos/metabolismo , Proliferação de Células
12.
Structure ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38703777

RESUMO

Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.

13.
Chem Sci ; 15(3): 1003-1017, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239681

RESUMO

mTOR serine/threonine kinase is a cornerstone in the PI3K/AKT/mTOR pathway. Yet, the detailed mechanism of activation of its catalytic core is still unresolved, likely due to mTOR complexes' complexity. Its dysregulation was implicated in cancer and neurodevelopmental disorders. Using extensive molecular dynamics (MD) simulations and compiled published experimental data, we determine exactly how mTOR's inherent motifs can control the conformational changes in the kinase domain, thus kinase activity. We also chronicle the critical regulation by the unstructured negative regulator domain (NRD). When positioned inside the catalytic cleft (NRD IN state), mTOR tends to adopt a deep and closed catalytic cleft. This is primarily due to the direct interaction with the FKBP-rapamycin binding (FRB) domain which restricts it, preventing substrate access. Conversely, when outside the catalytic cleft (NRD OUT state), mTOR favors an open conformation, exposing the substrate-binding site on the FRB domain. We further show how an oncogenic mutation (L2427R) promotes shifting the mTOR ensemble toward the catalysis-favored state. Collectively, we extend mTOR's "active-site restriction" mechanism and clarify mutation action. In particular, our mechanism suggests that RMC-5552 (RMC-6272) bitopic inhibitors may benefit from adjustment of the (PEG8) linker length when targeting certain mTOR variants. In the cryo-EM mTOR/RMC-5552 structure, the distance between the allosteric and orthosteric inhibitors is ∼22.7 Å. With a closed catalytic cleft, this linker bridges the sites. However, in our activation mechanism, in the open cleft it expands to ∼24.7 Å, offering what we believe to be the first direct example of how discovering an activation mechanism can potentially increase the affinity of inhibitors targeting mutants.

14.
JACS Au ; 4(5): 1911-1927, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818077

RESUMO

Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.

15.
Chem Sci ; 15(19): 7285-7292, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756801

RESUMO

Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.

16.
Phys Chem Chem Phys ; 15(41): 18179-84, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24065125

RESUMO

China has the highest incidence of hepatitis B virus (HBV) infection worldwide. HBV genotypes have variable impacts on disease pathogenesis and drug tolerance. We have developed a technically simple and accurate method for HBV genotyping that will be applicable to pre-treatment diagnosis and individualized treatment. Multiple sequence alignments of HBV genomes from GenBank were used to design primers and probes for genotyping of HBV A through H. The hybridization was carried out on nitrocellulose (NC) membranes with probes fixed in an array format, which was followed by hybrid amplification by an extension step with DNA polymerase to reinforce the double-stranded DNA hybrids on the NC membrane and subsequent visualization using an avidin-biotin system. Genotyping results were confirmed by DNA sequencing and bioinformatics analysis using the National Center for Biotechnology Information genotyping database, and compared with results from the line probe assay. The data show that multiple sequence alignment defined a 630 bp region in the HBV PreS and S regions that was suitable for genotyping. All genotyping significant single nucleotides in the region were defined. Two-hundred-and-ninety-one HBV-positive serum samples from Northwest Chinese patients were genotyped, and the genotyping rate from the new modified hybridization-extension method was 100% compared with direct sequencing. Compared with line probe assay, the newly developed method is superior, featuring reduced reaction time, lower risk of contamination, and increased accuracy for detecting single nucleotide mutation. In conclusion, a novel hybridization-extension method for HBV genotyping was established, which represents a new tool for accurate and rapid SNP detection that will benefit clinical testing.


Assuntos
DNA Viral/sangue , Vírus da Hepatite B/genética , Ensaios de Triagem em Larga Escala , Colódio/química , Primers do DNA/química , Primers do DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Bases de Dados Genéticas , Genótipo , Antígenos de Superfície da Hepatite B/genética , Humanos , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
17.
J Nanosci Nanotechnol ; 13(3): 1684-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755574

RESUMO

Influenza A/H1N1 virus spreads worldwide and has been a threat to human health and the poultry industry. Although H1N1 lateral-flow immunoassay strips are available for the detection of 2009/A/H1N1 antigens, the specificity and sensitivity of these strips are limited. Because of the monodispersity, the strong magnetic signal and the stable brown color of superparamagnetic nanoparticles, which were employed in this study as label instead of commonly used colloidal gold particles. Two different monoclonal anti-HA (hemagglutinin) and anti-HA-tag mAbs were paired for conjugating with paramagnetic beads and immobilizing on the surface of nitrocellulose (NC) membrane as capture antibody respectively. After optimizing the experimental condition, we generated a superparamagnetic bead-based immunochromatographic strip. The strip could detect HA antigen from H1N1 influenza A virus sample sensitively, its detection limit was 100 pg/mL. It had low cross reactivity with H3N2 influenza A virus and did not detect influenza B virus. It had no false positive detection in all of the tested control samples. With the help of magnetic assay reader (MAR), the magnetic intensity on test lines could be recorded and quantified proportionally with the amount of antigens captured. Those properties were indeed superior to the colloidal gold-based strips. More importantly, the strip was affordable and easy to use. Conceivably, superparamagnetic bead-based immunochromatographic strip should be a valuable point-of-care test for the rapid and specific detection of influenza A virus.


Assuntos
Cromatografia de Afinidade/instrumentação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Magnetismo , Nanopartículas , Anticorpos Monoclonais/imunologia , Coloides , Ensaio de Imunoadsorção Enzimática , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Limite de Detecção
18.
Protein Sci ; 32(1): e4504, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369657

RESUMO

Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer-dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer-dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proliferação de Células , Peptídeos
19.
Drug Discov Today ; 28(6): 103551, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907321

RESUMO

Drug discovery is arguably a highly challenging and significant interdisciplinary aim. The stunning success of the artificial intelligence-powered AlphaFold, whose latest version is buttressed by an innovative machine-learning approach that integrates physical and biological knowledge about protein structures, raised drug discovery hopes that unsurprisingly, have not come to bear. Even though accurate, the models are rigid, including the drug pockets. AlphaFold's mixed performance poses the question of how its power can be harnessed in drug discovery. Here we discuss possible ways of going forward wielding its strengths, while bearing in mind what AlphaFold can and cannot do. For kinases and receptors, an input enriched in active (ON) state models can better AlphaFold's chance of rational drug design success.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Sítio Alostérico , Proteínas/química , Desenho de Fármacos , Regulação Alostérica
20.
RSC Chem Biol ; 4(11): 850-864, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920394

RESUMO

The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA