Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int Microbiol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190086

RESUMO

Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.

2.
Appl Environ Microbiol ; 89(4): e0189622, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975807

RESUMO

The marine bacterial family Oceanospirillaceae, is well-known for its ability to degrade hydrocarbons and for its close association with algal blooms. However, only a few Oceanospirillaceae-infecting phages have been reported thus far. Here, we report on a novel Oceanospirillum phage, namely, vB_OsaM_PD0307, which has a 44,421 bp linear dsDNA genome and is the first myovirus infecting Oceanospirillaceae. A genomic analysis demonstrated that vB_OsaM_PD0307 is a variant of current phage isolates from the NCBI data set but that it has similar genomic features to two high-quality, uncultured viral genomes identified from marine metagenomes. Hence, we propose that vB_OsaM_PD0307 can be classified as the type phage of a new genus, designated Oceanospimyovirus. Additionally, metagenomic read mapping results have further shown that Oceanospimyovirus species are widespread in the global ocean, display distinct biogeographic distributions, and are abundant in polar regions. In summary, our findings expand the current understanding of the genomic characteristics, phylogenetic diversity, and distribution of Oceanospimyovirus phages. IMPORTANCE Oceanospirillum phage vB_OsaM_PD0307 is the first myovirus found to infect Oceanospirillaceae, and it represents a novel abundant viral genus in polar regions. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral genus, namely Oceanospimyovirus.


Assuntos
Bacteriófagos , Oceanospirillaceae , Filogenia , Clima Frio , Genômica , Genoma Viral
3.
BMC Genomics ; 22(1): 675, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544379

RESUMO

BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.


Assuntos
Bacteriófagos , Siphoviridae , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral , Genômica , Filogenia , Siphoviridae/genética
4.
Arch Virol ; 165(6): 1397-1407, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307604

RESUMO

A new cyanophage, S-B05, infecting a phycoerythrin-enriched (PE-type) Synechococcus strain was isolated by the liquid infection method, and its morphology and genetic features were examined. Phylogenetic analysis and morphological observation confirmed that S-B05 belongs to the family Myoviridae of the order Caudovirales. Its genome was fully sequenced, and found to be 208,857 bp in length with a G + C content of 39.9%. It contained 280 potential open reading frames and 123 conserved domains. Ninety-eight functional genes responsible for cyanophage structuring and packaging, DNA replication and regulation, and photosynthesis were identified, as well as genes encoding 172 hypothetical proteins. The genome of S-B05 is most similar to that of Prochlorococcus phage P-TIM68. Homologues of open reading frames of S-B05 can be found in various marine environments, as revealed by comparison of the S-B05 genome sequence to sequences in marine viral metagenomic databases. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as the phylogenetic relationships based on AMGs and the complete genome sequence, reflect the phage-host interaction mechanism or the specific adaptation strategy of the host to environmental conditions. The genome sequence information reported here will provide an important basis for further study of the adaptive evolution and ecological role of cyanophages and their hosts in the marine environment.


Assuntos
Genoma Viral , Myoviridae/classificação , Myoviridae/isolamento & purificação , Água do Mar/virologia , Synechococcus/virologia , Composição de Bases , Sequência de Bases , China , Especificidade de Hospedeiro , Metagenômica , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Oceano Pacífico , Filogenia , Microbiologia da Água , Sequenciamento Completo do Genoma
5.
Nanotechnology ; 31(11): 115201, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31747652

RESUMO

Bismuth telluride (Bi2Te3) is a typical topological insulator, which possesses a narrow band gap and exhibits fascinating performance in the photodetector field. In this work, we fabricated a Bi2Te3/graphene heterostructure via a facile one-pot hydrothermal method. The as-prepared composites were used as the electrode materials for the photoelectrochemical (PEC)-type photodetector. From the results of PEC tests, we obviously found that the Bi2Te3/graphene heterostructure offers a remarkable improvement in photoresponse compared to that of sole Bi2Te3, and effectively demonstrates effective photocarrier generation and transfer at the interface between the graphene and Bi2Te3, which can enhance the properties of the photoresponse. Moreover, owing to the self-powered ability of the PEC-type photodetector, it can work under the bias potential of 0 V and exhibits a prominent photoresponse which can reach 2.2 mA W-1. Also, the photocurrent density of the prepared Bi2Te3/graphene heterostructure-based photodetector can almost linearly rise with the increased irradiation power density. Even if the light intensity was reduced to 40 mW cm-2, the photocurrent density could also reach 67 µA cm-2, which ensures the photodetection ability of the as-prepared Bi2Te3/graphene under low light intensity. The excellent performance of a Bi2Te3/graphene heterostructure for a PEC-type photodetector holds great promise in the field of photoelectric detection.

6.
Curr Microbiol ; 77(2): 279-285, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31760453

RESUMO

A novel Pseudoalteromonas atlantica phage C7 was isolated from the coastal surface water in the Yellow Sea of China using the agar overlay method. Transmission electron microscopy analysis reveals that it belongs to Siphoviridae with a head of 56 nm in diameter and a tail of 102 nm in length. Microbiological characterization suggests that the phage is stable at a range of temperatures (from - 20 to 65 °C) and the optimal pH range is 6-12. One-step growth curve shows a 45-min latent period and a 105-min rise period. Genomic analysis shows that C7 has a linear, double-stranded 42,261-bp DNA molecule with 40.6% GC content and 76 putative open reading frames (ORFs) with one tRNA. The ORFs are classified into six functional groups as follows: hypothetical protein, phage structure, phage packaging, DNA replication and regulation, transcription, and some additional functions. There are many obviously similarities between C7 and a previously published Pseudoalteromonas phage vB_PspS-H40/1 by genomic comparison. This study provides an important data for further research on the interaction between marine bacteriophages and their hosts.


Assuntos
Genoma Viral , Pseudoalteromonas/virologia , Água do Mar/virologia , Siphoviridae/genética , Composição de Bases , China , DNA Viral/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Fases de Leitura Aberta , Água do Mar/microbiologia , Siphoviridae/isolamento & purificação
7.
Curr Microbiol ; 77(10): 2813-2820, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588135

RESUMO

Although Alteromonas is ubiquitous in the marine environment, very little is known about Alteromonas phages, with only ten, thus far, being isolated and reported on. In this study, a novel double-stranded DNA phage, Alteromonas phage P24, which infects Alteromonas macleodii, was isolated from the coastal waters off Qingdao. Alteromonas phage P24 has a siphoviral morphology, with an icosahedral head, 61 ± 1 nm in diameter, and a tail length of 105 ± 1 nm. Alteromonas phage P24 contains lipids. It has an optimal temperature and pH for growth of 20℃ and 5-7, respectively. A one-step growth curve shows a latent period of 55 min, a rise period of 65 min, and an average burst size of approximately 147 virions per cell. Alteromonas phage P24 has the genome of 46,945 bp with 43.80% GC content and 74 open reading frames (ORFs) without tRNA. The results of the phylogenetic tree, based on the mcp and terL genes, show that Alteromonas phage P24 is closely related to Aeromonas phage phiARM81ld. Meanwhile, phylogenetic analysis based on the whole genome of P24 indicates that it forms a unique viral sub-cluster within Siphoviridae. This study contributes to the understanding of the genomic characteristics and the virus-host interactions of Alteromonas phages.


Assuntos
Alteromonas , Bacteriófagos , Genoma Viral , Siphoviridae , Alteromonas/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral/genética , Fases de Leitura Aberta , Filogenia , Siphoviridae/classificação , Siphoviridae/genética
8.
Virus Genes ; 55(6): 834-842, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31420829

RESUMO

A novel Vibrio phage, P23, belonging to the family Siphoviridae was isolated from the surface water of the Yellow Sea, China. The complete genome of this phage was determined. A one-step growth curve showed that the latent period was approximately 30 min, the burst size was 24 PFU/cell, and the rise period was 20 min. The phage is host specific and is stable over a range of pH (5-10) and temperatures (4-65 °C). Transmission electron microscopy showed that phage P23 can be categorized into the Siphoviridae family, with an icosahedral head of 60 nm and a long noncontractile tail of 144 nm. The genome consisted of a linear, double-stranded 40.063 kb DNA molecule with 42.5% G+C content and 72 putative open reading frames (ORFs) without tRNA. The predicted ORFs were classified into six functional groups, including DNA replication, regulation and nucleotide metabolism, transcription, phage packaging, phage structure, lysis, and hypothetical proteins. The Vibrio phage P23 genome is a new marine Siphoviridae-family phage genome that provides basic information for further molecular research on interaction mechanisms between bacteriophages and their hosts.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Filogenia , Sequenciamento Completo do Genoma , Bacteriófagos/classificação , Composição de Bases/genética , China , Genômica , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA , Siphoviridae/genética , Vibrio/genética , Vibrio/virologia
9.
Curr Microbiol ; 76(10): 1225-1233, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302725

RESUMO

Two novel Vibrio phages, LP.1 and LP.2 that infected Vibrio maritimus R-40493, were isolated from surface seawater in Qingdao coastal area by the double-agar layer method. Morphological analysis by transmission electron microscope showed that the two phages displayed head-tail structures with icosahedral heads of 62.37 and 54.00 nm in diameter and long non-contractile tails of 119.00 and 105.20 nm in length, respectively, and can be grouped into the Siphoviridae family. Thermal and pH sensitivity tests exhibited that LP.1 was stable at temperature ranging from - 20 to 65 °C and at pH ranging from 5 to 12, and LP.2 showed vitality over a wider range of temperature (- 20-75 °C) and pH (3-12). Both LP.1 and LP.2 contained linear and double-stranded DNA genomes with a length of 46,791-bp and 37,128-bp, respectively. The genome of both phages can be classified into four functional groups, including DNA replication and regulation, phage packaging, phage structure, and additional function. The bioinformatic analysis demonstrated that the Vibrio phages LP.1 and LP.2 are novel phages. By conducting morphological, biochemical, and genomic analysis, our study provides useful information for further research on the interaction between Vibrio phages and their host.


Assuntos
Genoma Viral/genética , Água do Mar/virologia , Siphoviridae/genética , Vibrio/virologia , China , DNA Viral/genética , Especificidade de Hospedeiro , Filogenia , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/fisiologia , Siphoviridae/ultraestrutura , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Curr Microbiol ; 76(6): 681-686, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949805

RESUMO

A novel cyanophage, S-B64, which can infect marine Synechococcus WH8102, was isolated from the coastal waters of the Yellow Sea using the liquid serial dilution method. Morphological study by transmission electron microscopy revealed that the cyanophage belongs to Podovirus. It's genome, which was completely sequenced, contains a 151,867 bp DNA molecule with a G+C content of 41.78% and 186 potential open reading frames. The functions of the genes include cyanophage structure, cyanophage packaging, DNA replication and regulation. After primary characterization, it was found that the latent period is about 3 h, and it lysed after 8 h, the burst size is about 23 virions per cell. This information will provide an important benchmark for further research on the interaction between cyanophages and their hosts.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genoma Viral , Podoviridae/genética , Podoviridae/isolamento & purificação , Água do Mar/virologia , Synechococcus/virologia , Bacteriófagos/classificação , Bacteriófagos/ultraestrutura , Composição de Bases , China , Genes Virais , Microscopia Eletrônica de Transmissão , Podoviridae/classificação , Podoviridae/ultraestrutura , Análise de Sequência de DNA , Vírion/ultraestrutura
11.
Curr Microbiol ; 75(12): 1619-1625, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218176

RESUMO

We used the double-agar layer method to isolate a novel Marinobacter marina bacteriophage, B23, from the surface water sample of the Bohai sea of China. There is some work to better understand the phage. The result of transmission electron microscopy revealed that B23 belongs to the family Siphoviridae with a head of 80 nm in diameter and a tail of 230 nm. Microbiological characterization evidenced that phage B23 is stable at the temperatures from - 25 to 60 °C, and showed vigorous vitality at pH between 4.0 and 12.0. One-step growth experiment showed that it had a longer latent period and higher lysis efficiency. Furthermore, the complete genome of B23 was sequenced and analyzed, which consists of a 35132 bp DNA with a G + C content of 59.8% and 50 putative open reading frames. The genome was divided into five parts, consisting of DNA replication and regulation, phage packaging, phage structure, host lysis and hypothetical protein.


Assuntos
Genoma Viral , Marinobacter/virologia , Siphoviridae/genética , Concentração de Íons de Hidrogênio , Filogenia , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Temperatura , Sequenciamento Completo do Genoma
12.
Phys Chem Chem Phys ; 17(32): 20795-804, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26214743

RESUMO

A novel binder-free electrode material of NiMoO4@CoMoO4 hierarchical nanospheres anchored on nickel foam with excellent electrochemical performance has been synthesized via a facile hydrothermal strategy. Microstructures and morphologies of samples are characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Besides, the effect of Ni/Co molar ratios of raw materials on electrochemical behaviors is also investigated by cyclic voltammetry, galvanostatic charge-discharge measurements, cycling tests and electrochemical impedance spectroscopy methods. Remarkably, the resulting NiMoO4@CoMoO4 hierarchical nanospheres with a Ni/Co molar ratio of 4 : 1 exhibit greatly enhanced capacitive properties relative to other components and display a high specific capacitance of 1601.6 F g(-1) at the current density of 2 A g(-1), as well as better cycling stability and rate capability. Moreover, a symmetric supercapacitor is constructed using NiMoO4@CoMoO4 nanospheres as the positive and negative electrodes with one piece of cellulose paper as the separator, which shows good electrochemical performance. Such enchanced capacitive properties are mostly attributed to the synergistic effect of nickel and cobalt molybdates directly deposited on the conductive substrate and their novel hierarchical structure, which can provide pathways for fast diffusion and transportation of ions and electrons and a large number of active sites. The results imply that the NiMoO4@CoMoO4 hierarchical nanospheres could be promising candidates for electrochemical energy storage.

13.
Nanomaterials (Basel) ; 14(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057859

RESUMO

Transition metal (TM) single-atom catalysts (SACs) have been widely applied in photocatalytic CO2 reduction. In this work, n-p codoping engineering is introduced to account for the modulation of photocatalytic CO2 reduction on a two-dimensional (2D) bismuth-oxyhalide-based cathode by using first-principles calculation. n-p codoping is established via the Coulomb interactions between the negatively charged TM SACs and the positively charged Cl vacancy (VCl) in the dopant-defect pairs. Based on the formation energy of charged defects, neutral dopant-defect pairs for the Fe, Co, and Ni SACs (PTM0) and the -1e charge state of the Cu SAC-based pair (PCu-1) are stable. The electrostatic attraction of the n-p codoping strengthens the stability and solubility of TM SACs by neutralizing the oppositely charged VCl defect and TM dopant. The n-p codoping stabilizes the electron accumulation around the TM SACs. Accumulated electrons modify the d-orbital alignment and shift the d-band center toward the Fermi level, enhancing the reducing capacity of TM SACs based on the d-band theory. Besides the electrostatic attraction of the n-p codoping, the PCu-1 also accumulates additional electrons surrounding Cu SACs and forms a half-occupied dx2-y2 state, which further upshifts the d-band center and improves photocatalytic CO2 reduction. The metastability of Cl multivacancies limits the concentration of the n-p pairs with Cl multivacancies (PTM@nCl (n > 1)). Positively charged centers around the PTM@nCl (n > 1) hinders the CO2 reduction by shielding the charge transfer to the CO2 molecule.

14.
Chem Sci ; 15(3): 1123-1131, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239697

RESUMO

Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped Ni0.85Se/MoSe2 heterostructural electrocatalyst, Mox-Ni0.85Se/MoSe2, was successfully prepared by simultaneously doping Mo cations into the Ni0.85Se lattice (Mox-Ni0.85Se) and growing atomic MoSe2 nanosheets epitaxially at the edge of the Mox-Ni0.85Se. Such an Mox-Ni0.85Se/MoSe2 catalyst requires only 110 mV to drive current densities of 10 mA cm-2 in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm-2. The experimental results, combined with the density functional theory calculations, reveal that the Mox-Ni0.85Se/MoSe2 heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the Ni0.85Se can regulate the local electronic configuration of the Mox-Ni0.85Se/MoSe2 heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mox-Ni0.85Se/MoSe2 heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.

15.
Microbiol Spectr ; 12(2): e0336723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214523

RESUMO

Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.


Assuntos
Bacteriófagos , Shewanella , Bacteriófagos/genética , Shewanella/genética , Filogenia , Análise de Sequência de DNA , Genoma Viral , Fases de Leitura Aberta , DNA Viral/genética
16.
ACS Nano ; 18(5): 4343-4351, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277336

RESUMO

The confinement of electrons in one-dimensional (1D) space highlights the prominence of the role of electron interactions or correlations, leading to a variety of fascinating physical phenomena. The quasi-1D electron states can exhibit a unique spin texture under spin-orbit interaction (SOI) and thus could generate a robust spin current by forbidden electron backscattering. Direct detection of such 1D spin or SOI information, however, is challenging due to complicated techniques. Here, we identify an anomalous planar Hall effect (APHE) in the magnetotransport of quasi-1D van der Waals (vdW) topological materials as exemplified by Bi4Br4, which arises from the quantum interference correction of 1D weak antilocalization (WAL) to the ordinary planar Hall effect and demonstrates a deviation from the usual sine and cosine curves. The occurrence of 1D WAL is correlated to the line-shape Fermi surface and persistent spin texture of (100) topological surface states of Bi4Br4, as revealed by both our angle-resolved photoemission spectroscopy and first-principles calculations. By generalizing the observation of APHE to other non-vdW bulk materials, this work provides a possible characteristic of magnetotransport for identifying the spin/SOI information and quantum interference behavior of 1D states in 3D topological material.

17.
Virus Res ; 339: 199270, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37972855

RESUMO

Vibrio is a prevalent bacterial genus in aquatic environments and exhibits diverse metabolic capabilities, playing a vital role in marine biogeochemical cycles. This study isolated a novel virus infecting Vibrio cyclitrophicus, vB_VviC_ZQ26, from coastal waters near Qingdao, China. The vB_VviC_ZQ26 comprises a linear double-stranded DNA genome with a length of 42,982 bp and a G + C content of 43.21 %, encoding 72 putative open reading frames (ORFs). Transmission electron microscope characterization indicates a siphoviral-morphology of vB_VviC_ZQ26. Nucleic-acids-wide analysis indicates a tetranucleotide frequency deviation for genomic segments encoding putative gene transfer agent protein (GTA) and coil-containing protein, implying divergent origins occurred in different parts of viral genomes. Phylogenetic and genome-content-based analysis suggest that vB_VviC_ZQ26 represents a novel vibriophage-specific family designated as Coheviridae. From the result of biogeographic analysis, Coheviridae is mainly colonized in the temperate and tropical epipelagic zones. This study describes a novel vibriophage infecting V. cyclitrophicus, shedding light on the evolutionary divergence of different parts of the viral genome and its ecological footprint in marine environments.


Assuntos
Bacteriófagos , Vibrio , Filogenia , Vibrio/genética , DNA , Genoma Viral , Fases de Leitura Aberta , DNA Viral/genética
18.
Virus Res ; 334: 199183, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499764

RESUMO

Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.


Assuntos
Bacteriófagos , Filogenia , Genoma Viral , Genômica , Análise de Sequência de DNA , Fases de Leitura Aberta
19.
Nat Commun ; 14(1): 4964, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587124

RESUMO

Weak topological insulators, constructed by stacking quantum spin Hall insulators with weak interlayer coupling, offer promising quantum electronic applications through topologically non-trivial edge channels. However, the currently available weak topological insulators are stacks of the same quantum spin Hall layer with translational symmetry in the out-of-plane direction-leading to the absence of the channel degree of freedom for edge states. Here, we study a candidate weak topological insulator, Bi4Br2I2, which is alternately stacked by three different quantum spin Hall insulators, each with tunable topologically non-trivial edge states. Our angle-resolved photoemission spectroscopy and first-principles calculations show that an energy gap opens at the crossing points of different Dirac cones correlated with different layers due to the interlayer interaction. This is essential to achieve the tunability of topological edge states as controlled by varying the chemical potential. Our work offers a perspective for the construction of tunable quantized conductance devices for future spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA