Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Chem Soc ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615326

RESUMO

Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of ∼61 mV/decade, and a small gate hysteresis (∼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.

2.
Ecotoxicol Environ Saf ; 254: 114757, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950987

RESUMO

Soil and water are increasingly at risk of contamination from the toxic heavy metals lead (Pb) and cadmium (Cd). Arabis paniculata (Brassicaceae) is a hyperaccumulator of heavy metals (HMs) found widely distributed in areas impacts by mining activities. However, the mechanism by which A. paniculata tolerates HMs is still uncharacterized. For this experiment, we employed RNA sequencing (RNA-seq) in order to find Cd (0.25 mM)- and Pb (2.50 mM)-coresponsive genes A. paniculata. In total, 4490 and 1804 differentially expressed genes (DEGs) were identified in root tissue, and 955 and 2209 DEGs were identified in shoot tissue, after Cd and Pb exposure, respectively. Interestingly in root tissue, gene expression corresponded similarly to both Cd and Pd exposure, of which 27.48% were co-upregulated and 41.00% were co-downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the co-regulated genes were predominantly involved in transcription factors (TFs), cell wall biosynthesis, metal transport, plant hormone signal transduction, and antioxidant enzyme activity. Many critical Pb/Cd-induced DEGs involved in phytohormone biosynthesis and signal transduction, HM transport, and transcription factors were also identified. Especially the gene ABCC9 was co-downregulated in root tissues but co-upregulated in shoot tissues. The co-downregulation of ABCC9 in the roots prevented Cd and Pb from entering the vacuole rather than the cytoplasm for transporting HMs to shoots. While in shoots, the ABCC9 co-upregulated results in vacuolar Cd and Pb accumulation, which may explain why A. paniculata is a hyperaccumulator. These results will help to reveal the molecular and physiological processes underlying tolerance to HM exposure in the hyperaccumulator A. paniculata, and aid in future efforts to utilize this plant in phytoremediation.


Assuntos
Arabis , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Arabis/genética , Arabis/metabolismo , Chumbo/análise , Transcriptoma , Metais Pesados/análise , Biodegradação Ambiental , Reguladores de Crescimento de Plantas/metabolismo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
3.
Nano Lett ; 22(18): 7659-7666, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069426

RESUMO

Bi2O2Te has the smallest effective mass and preferable carrier mobility in the Bi2O2X (X = S, Se, Te) family. However, compared to the widely explored Bi2O2Se, the studies on Bi2O2Te are very rare, probably attributed to the lack of efficient ways to achieve the growth of ultrathin films. Herein, ultrathin Bi2O2Te crystals were successfully synthesized by a trace amount of O2-assisted chemical vapor deposition (CVD) method, enabling the observation of ultrahigh low-temperature Hall mobility of >20 000 cm2 V-1 s-1, pronounced Shubnikov-de Haas quantum oscillations, and small effective mass of ∼0.10 m0. Furthermore, few nm thick CVD-grown Bi2O2Te crystals showed high room-temperature Hall mobility (up to 500 cm2 V-1 s-1) both in nonencapsulated and top-gated device configurations and preserved the intrinsic semiconducting behavior with Ion/Ioff ∼ 103 at 300 K and >106 at 80 K. Our work uncovers the veil of semiconducting Bi2O2Te with high mobility and brings new blood into Bi2O2X family.


Assuntos
Bismuto , Doenças Cardiovasculares , Bismuto/química , Gases/química , Humanos , Tamanho da Partícula , Telúrio/química
4.
BMC Genomics ; 23(1): 778, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443662

RESUMO

Cadmium (Cd) is a highly toxic pollutant in soil and water that severely hampers the growth and reproduction of plants. Phytoremediation has been presented as a cost-effective and eco-friendly method for addressing heavy metal pollution. However, phytoremediation is restricted by the limited number of accumulators and the unknown mechanisms underlying heavy metal tolerance. In this study, we demonstrated that Erigeron canadensis (Asteraceae), with its strong adaptability, is tolerant to intense Cd stress (2 mmol/L CdCl2 solution). Moreover, E. canadensis exhibited a strong ability to accumulate Cd2+ when treated with CdCl2 solution. The activity of some antioxidant enzymes, as well as the malondialdehyde (MDA) level, was significantly increased when E. canadensis was treated with different CdCl2 solutions (0.5, 1, 2 mmol/L CdCl2). We found high levels of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities under 1 mmol/L CdCl2 treatment. Comparative transcriptomic analysis identified 5,284 differentially expressed genes (DEGs) in the roots and 3,815 DEGs in the shoots after E. canadensis plants were exposed to 0.5 mM Cd. Functional annotation of key DEGs indicated that signal transduction, hormone response, and reactive oxygen species (ROS) metabolism responded significantly to Cd. In particular, the DEGs involved in auxin (IAA) and ethylene (ETH) signal transduction were overrepresented in shoots, indicating that these genes are mainly involved in regulating plant growth and thus likely responsible for the Cd tolerance. Overall, these results not only determined that E. canadensis can be used as a potential accumulator of Cd but also provided some clues regarding the mechanisms underlying heavy metal tolerance.


Assuntos
Asteraceae , Erigeron , Cádmio/toxicidade , Perfilação da Expressão Gênica , Transcriptoma , Antioxidantes
5.
ACS Nano ; 18(1): 703-712, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38133597

RESUMO

Two-dimensional ferromagnetic materials (2D-FMs) are expected to become ideal candidates for low-power, high-density information storage in next-generation spintronics devices due to their atomically ultrathin and intriguing magnetic properties. However, 2D-FMs with room-temperature Curie temperatures (Tc) are still rarely reported, which greatly hinders their research progress and practical applications. Herein, ultrathin Cu-doped Cr7Te8 FMs were successfully prepared and can achieve above-room-temperature ferromagnetism with perpendicular magnetic anisotropy via a facile chemical vapor deposition (CVD) method, which can be controlled down to an atomic thin layer of ∼3.4 nm. STEM-EDX quantitative analysis shows that the proportion of Cu to metal atoms is ∼5%. Moreover, based on the anomalous Hall effect (AHE) measurements in a six-terminal Hall bar device without any encapsulation as well as an out-of-plane magnetic field, the maximum Tc achieved ∼315 K when the thickness of the sample is ∼28.8 nm; even the ultrathin 7.6 nm sample possessed a near-room-temperature Tc of ∼275 K. Meanwhile, theoretical calculations elucidated the mechanism of the ferromagnetic enhancement of Cu-doped Cr7Te8 nanosheets. More importantly, the ferromagnetism of CVD-synthesized Cu-doped CrSe nanosheets can also be maintained above room temperature. Our work broadens the scope on room-temperature ferromagnets and their heterojunctions, promoting fundamental research and practical applications in next-generation spintronics.

6.
Nat Commun ; 15(1): 1259, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341422

RESUMO

Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 µΩ⋅cm) at room temperature under 9 T in ß-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized ß-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.

7.
Small Methods ; 7(9): e2300177, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37287373

RESUMO

Owing to rapid property degradation after ambient exposure and incompatibility with conventional device fabrication process, electrical transport measurements on air-sensitive 2D materials have always been a big issue. Here, for the first time, a facile one-step polymer-encapsulated electrode transfer (PEET) method applicable for fragile 2D materials is developed, which showed great advantages of damage-free electrodes patterning and in situ polymer encapsulation preventing from H2 O/O2 exposure during the whole electrical measurements process. The ultrathin SmTe2 metals grown by chemical vapor deposition (CVD) are chosen as the prototypical air-sensitive 2D crystals for their poor air-stability, which will become highly insulating when fabricated by conventional lithographic techniques. Nevertheless, the intrinsic electrical properties of CVD-grown SmTe2 nanosheets can be readily investigated by the PEET method instead, showing ultralow contact resistance and high signal/noise ratio. The PEET method can be applicable to other fragile ultrathin magnetic materials, such as (Mn,Cr)Te, to investigate their intrinsic electrical/magnetic properties.

8.
Nanoscale ; 15(38): 15583-15589, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37697961

RESUMO

Three-dimensional magnetoplasmonic nanostructures possess more novel and richer optical and magneto-optical (MO) behaviors compared with planar nanostructures, and exhibit attractive potential applications in micro-nano non-reciprocal photonic devices. However, fabrication of three-dimensional magnetoplasmonic nanostructures is difficult using the usual nanofabrication methods. This work constructs three-dimensional substrate-free Au/Co/Au structures prepared using focused ion beam (FIB) technology. In the three-dimensional split-ring structure, with y-polarized light normal incidence, a three-dimensional coupling current is formed between the vertical split-ring and the bottom square hole, which causes excitation of the Fano resonance. The Fano resonance causes a significant enhancement of the local magnetic field, resulting in a larger Faraday rotation (FR). The resonance also brings about a sign reversal of FR, which is related to the direction of the Lorentz force on electrons. Similar effects also exist in the three-dimensional nanopillar structure and the three-dimensional nanoring structure in the simulation results. Due to the high flexibility of FIB machining, the height and shape of the three-dimensional split-ring can be arbitrarily changed, which means the FR intensity and the position of the FR null point are tunable. The designed three-dimensional structures provide a new route to regulate the Faraday effect, and broaden the possibilities for the design and construction of MO devices.

9.
Nat Commun ; 14(1): 4406, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479692

RESUMO

Single-crystalline high-κ dielectric materials are desired for the development of future two-dimensional (2D) electronic devices. However, curent 2D gate insulators still face challenges, such as insufficient dielectric constant and difficult to obtain free-standing and transferrable ultrathin films. Here, we demonstrate that ultrathin Bi2SiO5 crystals grown by chemical vapor deposition (CVD) can serve as excellent gate dielectric layers for 2D semiconductors, showing a high dielectric constant (>30) and large band gap (~3.8 eV). Unlike other 2D insulators synthesized via in-plane CVD on substrates, vertically grown Bi2SiO5 can be easily transferred onto other substrates by polymer-free mechanical pressing, which greatly facilitates its ideal van der Waals integration with few-layer MoS2 as high-κ dielectrics and screening layers. The Bi2SiO5 gated MoS2 field-effect transistors exhibit an ignorable hysteresis (~3 mV) and low drain induced barrier lowering (~5 mV/V). Our work suggests vertically grown Bi2SiO5 nanoflakes as promising candidates to improve the performance of 2D electronic devices.

10.
ACS Nano ; 17(11): 10783-10791, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259985

RESUMO

The development of two-dimensional (2D) electronics is always accompanied by the discovery of 2D semiconductors with high mobility and specific crystal structures, which may bring revolutionary breakthrough on proof-of-concept devices and physics. Here, Bi3O2.5Se2, a 2D bismuth oxyselenide semiconductor with non-neutral layered crystal structure is discovered. Ultrathin Bi3O2.5Se2 films are readily synthesized by chemical vapor deposition, displaying tunable band gaps and high room-temperature field-effect mobility of >220 cm2 V-1 s-1. Moreover, the as-synthesized Bi3O2.5Se2 nanoplates were fabricated into top-gated transistors with a simple device configuration, whose carrier density can be reversibly regulated in the range of 1014 cm-2 just by a facile method of electrostatic doping at room temperature. These features enable it to be functionalized into nonvolatile synaptic transistors with ultralow operating energy consumption (∼0.5 fJ), high repeatability, low operating voltage (0.1 V), and long retention time. Our work extends the family of bismuth oxyselenide 2D semicondutors.

11.
PLoS One ; 16(7): e0254109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237086

RESUMO

Moricandia arvensis, a plant species originating from the Mediterranean, has been classified as a rare C3-C4 intermediate species, and it is a possible bridge during the evolutionary process from C3 to C4 plant photosynthesis in the family Brassicaceae. Understanding the genomic structure, gene order, and gene content of chloroplasts (cp) of such species can provide a glimpse into the evolution of photosynthesis. In the present study, we obtained a well-annotated cp genome of M. arvensis using long PacBio and short Illumina reads with a de novo assembly strategy. The M. arvensis cp genome was a quadripartite circular molecule with the length of 153,312 bp, including two inverted repeats (IR) regions of 26,196 bp, divided by a small single copy (SSC) region of 17,786 bp and a large single copy (LSC) region of 83,134 bp. We detected 112 unigenes in this genome, comprising 79 protein-coding genes, 29 tRNAs, and four rRNAs. Forty-nine long repeat sequences and 51 simple sequence repeat (SSR) loci of 15 repeat types were identified. The analysis of Ks (synonymous) and Ka (non-synonymous) substitution rates indicated that the genes associated with "subunits of ATP synthase" (atpB), "subunits of NADH-dehydrogenase" (ndhG and ndhE), and "self-replication" (rps12 and rpl16) showed relatively higher Ka/Ks values than those of the other genes. The gene content, gene order, and LSC/IR/SSC boundaries and adjacent genes of the M. arvensis cp genome were highly conserved compared to those in related C3 species. Our phylogenetic analysis demonstrated that M. arvensis was clustered into a subclade with cultivated Brassica species and Raphanus sativus, indicating that M. arvensis was not involved in an independent evolutionary origin event. These results will open the way for further studies on the evolutionary process from C3 to C4 photosynthesis and hopefully provide guidance for utilizing M. arvensis as a resource for improvinng photosynthesis efficiency in cultivated Brassica species.


Assuntos
Brassicaceae/genética , Carbono/metabolismo , Genoma de Cloroplastos , Fotossíntese/genética , Substituição de Aminoácidos/genética , Mapeamento Cromossômico , Códon/genética , Loci Gênicos , Repetições de Microssatélites/genética , Fases de Leitura Aberta/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA