Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 92, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654264

RESUMO

BACKGROUND: Transposable elements (TEs) have a profound influence on the trajectory of plant evolution, driving genome expansion and catalyzing phenotypic diversification. The pangenome, a comprehensive genetic pool encompassing all variations within a species, serves as an invaluable tool, unaffected by the confounding factors of intraspecific diversity. This allows for a more nuanced exploration of plant TE evolution. RESULTS: Here, we constructed a pangenome for diploid A-genome cotton using 344 accessions from representative geographical regions, including 223 from China as the main component. We found 511 Mb of non-reference sequences (NRSs) and revealed the presence of 5479 previously undiscovered protein-coding genes. Our comprehensive approach enabled us to decipher the genetic underpinnings of the distinct geographic distributions of cotton. Notably, we identified 3301 presence-absence variations (PAVs) that are closely tied to gene expression patterns within the pangenome, among which 2342 novel expression quantitative trait loci (eQTLs) were found residing in NRSs. Our investigation also unveiled contrasting patterns of transposon proliferation between diploid and tetraploid cotton, with long terminal repeat (LTR) retrotransposons exhibiting a synchronized surge in polyploids. Furthermore, the invasion of LTR retrotransposons from the A subgenome to the D subgenome triggered a substantial expansion of the latter following polyploidization. In addition, we found that TE insertions were responsible for the loss of 36.2% of species-specific genes, as well as the generation of entirely new species-specific genes. CONCLUSIONS: Our pangenome analyses provide new insights into cotton genomics and subgenome dynamics after polyploidization and demonstrate the power of pangenome approaches for elucidating transposon impacts and genome evolution.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma de Planta , Gossypium , Gossypium/genética , Elementos de DNA Transponíveis/genética , Locos de Características Quantitativas
2.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324761

RESUMO

Versatile, informative, sensitive, and specific nucleic acid detection plays a crucial role in point-of-care pathogen testing, genotyping, and disease monitoring. In this study, we present a novel one-pot Cas12b-based method coupled with the "Green-Yellow-Red" strategy for multiplex detection. By integrating RT-LAMP amplification and Cas12b cleavage in a single tube, the entire detection process can be completed within 1 h. Our proposed method exhibits high specificity, enabling the discrimination of single-base mutations with detection sensitivity approaching single molecule levels. Additionally, the fluorescent results can be directly observed by the naked eye or automatically analyzed using our custom-designed software Result Analyzer. To realize point-of-care detection, we developed a portable cartridge capable of both heating and fluorescence excitation. In a clinical evaluation involving 20 potentially SARS-CoV-2-infected samples, our method achieved a 100% positive detection rate when compared to standard RT-PCR. Furthermore, the identification of SARS-CoV-2 variants using our method yielded results that were consistent with the sequencing results. Notably, our proposed method demonstrates excellent transferability, allowing for the simultaneous detection of various pathogens and the identification of mutations as low as 0.5% amidst a high background interference. These findings highlight the tremendous potential of our developed method for molecular diagnostics.

3.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725346

RESUMO

SUMMARY: TAD boundaries are essential for organizing the chromatin spatial structure and regulating gene expression in eukaryotes. However, for large-scale pan-3D genome research, identifying conserved and specific TAD boundaries across different species or individuals is computationally challenging. Here, we present Tcbf, a rapid and powerful Python/R tool that integrates gene synteny blocks and homologous sequences to automatically detect conserved and specific TAD boundaries among multiple species, which can efficiently analyze huge genome datasets, greatly reduce the computational burden and enable pan-3D genome research. AVAILABILITY AND IMPLEMENTATION: Tcbf is implemented by Python/R and is available at https://github.com/TcbfGroup/Tcbf under the MIT license.


Assuntos
Genoma , Software , Humanos , Sintenia , Eucariotos/genética , Cromatina
4.
Small ; : e2307985, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084466

RESUMO

Genetic variations are always related to human diseases or susceptibility to therapies. Nucleic acid probes that precisely distinguish closely related sequences become an indispensable requisite both in research and clinical applications. Here, a Sequence-guided DNA LOCalization for leaKless DNA detection (SeqLOCK) is introduced as a technique for DNA hybridization, where the intended targets carrying distinct "guiding sequences" act selectively on the probes. In silicon modeling, experimental results reveal considerable agreement (R2  = 0.9228) that SeqLOCK is capable of preserving high discrimination capacity at an extraordinarily wide range of target concentrations. Furthermore, SeqLOCK reveals high robustness to various solution conditions and can be directly adapted to nucleic acid amplification techniques (e.g., polymerase chain reaction) without the need for laborious pre-treatments. Benefiting from the low hybridization leakage of SeqLOCK, three distinct variations with a clinically relevant mutation frequency under the background of genomic DNA can be discriminated simultaneously. This work establishes a reliable nucleic acid hybridization strategy that offers great potential for constructing robust and programmable systems for molecular sensing and computing.

5.
Langmuir ; 39(29): 10189-10198, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432677

RESUMO

Electrowetting-on-dielectric (EWOD) technology has been considered as a promising candidate for digital microfluidic (DMF) applications due to its outstanding flexibility and integrability. The dielectric layer with a hydrophobic surface is the key element of an EWOD device, determining its driving voltage, reliability, and lifetime. Hereby, inspired by the ionic-liquid-filled structuring polymer with high capacitance independent on thickness, namely ion gel (IG), we develop a polymer (P)-ion gel-amorphous fluoropolymer, namely, PIGAF, composite film as a replaceable hydrophobic dielectric layer for fabrication of a high-efficiency and stable EWOD-DMF device at relatively low voltage. The results show that the proposed EWOD devices using the PIGAF-based dielectric layer can achieve a large contact angle (θ) change of ∼50° and excellent reversibility with a contact angle hysteresis of ≤5° at a relatively low voltage of 30 Vrms. More importantly, the EWOD actuation voltage did not change obviously with the PIGAF film thickness in the range of several to tens of microns, enabling the thickness of the film to be adjusted according to the demand within a certain range while keeping the actuation voltage low. An EWOD-DMF device can be prepared by simply stacking a PIGAF film onto a PCB board, demonstrating stable droplet actuation (motion) at 30 Vrms and 1 kHz as well as a maximum moving velocity of 69 mm/s at 140 Vrms and 1 kHz. The PIGAF film was highly stable and reliable, maintaining excellent EWOD performance after multiple droplet manipulations (≥50 cycles) or long-term storage of 1 year. The proposed EWOD-DMF device has been demonstrated for digital chemical reactions and biomedical sensing applications.

6.
Mol Biol Evol ; 38(9): 3621-3636, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33973633

RESUMO

Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active ("A") and inactive ("B") compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.


Assuntos
Elementos de DNA Transponíveis , Gossypium , Elementos de DNA Transponíveis/genética , Genoma de Planta , Genômica , Gossypium/genética , Sintenia
7.
Plant Biotechnol J ; 20(12): 2372-2388, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053965

RESUMO

Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.


Assuntos
Fibra de Algodão , Gossypium , Gossypium/genética , RNA-Seq , Tricomas/genética , Óvulo Vegetal/genética
8.
Genomics ; 113(5): 3405-3414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311045

RESUMO

Structural variations (SVs) are recognized to have an important role in transcriptional regulation, especially in the light of resolved 3D genome structure using high-throughput chromosome conformation capture (Hi-C) technology in mammals. However, the effect of SVs on 3D genome organization in plants remains rarely understood. In this study, we identified 295,496 SVs and 5251 topologically associating domains (TADs) in two diploid and two tetraploid cottons. We observed that approximately 16% of SVs occurred in TAD boundary regions that were called boundary affecting-structural variations (BA-SVs), and had a large effect on disrupting TAD organization. Nevertheless, SVs preferred occurring in TAD interior instead of TAD boundary, probably associated with the relaxed evolutionary selection pressure. We noticed the biased evolution of the At and Dt subgenomes of tetraploid cottons, in terms of SV-mediated disruption of 3D genome structure relative to diploids. In addition, we provide evidence showing that both SVs and TAD disruption could lead to expression difference of orthologous genes. This study advances our understanding of the effect of SVs on 3D genome organization and gene expression regulation in plants.


Assuntos
Genoma , Tetraploidia , Animais , Cromatina , Cromossomos , Regulação da Expressão Gênica , Mamíferos/genética
9.
Mikrochim Acta ; 188(1): 24, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404755

RESUMO

A rolling circle amplification chemiluminescence immunoassay (RCA-CLIA) was developed for precise quantitation of Aß in plasma. Capture antibodies conjugated with magnetic beads and detection antibodies with collateral single-stranded DNA (ssDNA) were bound to Aß42/Aß40 antigens to form a typical double-antibody sandwich structure. The RCA reaction was triggered by the addition of ssDNA, which generated products with a large number of sites for the binding of acridinium ester (AE)-labeled detection probes, thereby realizing the purpose of the amplification. The RCA-CLIA method had higher sensitivity than conventional CLIA without loss of specificity. Under optimum conditions, the linear range of Aß42 and Aß40 detection was 3.9-140 pg/mL and 3.9-180 pg/mL, respectively, with corresponding low detection limits of 1.99 pg/mL and 3.14 pg/mL, respectively. Plasma Aß42 and Aß40 were detected in the blood of 21 AD patients and 22 healthy people, wherein this ratio could significantly distinguish AD patients from healthy individuals with a sensitivity of 90.48% and specificity of 63.64% for a cutoff value of 154. The Aß42/Aß40 ratio of plasma acts as an accurate indicator for AD diagnosis; therefore, detection of plasma Aß using the RCA-CLIA exhibits great potential in noninvasive diagnosis and progressive assessment of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Imunoensaio/métodos , Acridinas/química , Peptídeos beta-Amiloides/imunologia , Anticorpos Imobilizados/imunologia , Biomarcadores/sangue , Sondas de DNA/química , DNA de Cadeia Simples/química , Humanos , Limite de Detecção , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Técnicas de Amplificação de Ácido Nucleico , Reprodutibilidade dos Testes
10.
Nucleic Acids Res ; 46(12): 6026-6040, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733394

RESUMO

Sin3a is a core component of histone-deacetylation-activity-associated transcriptional repressor complex, playing important roles in early embryo development. Here, we reported that down-regulation of Sin3a led to the loss of embryonic stem cell (ESC) self-renewal and skewed differentiation into mesendoderm lineage. We found that Sin3a functioned as a transcriptional coactivator of the critical Nodal antagonist Lefty1 through interacting with Tet1 to de-methylate the Lefty1 promoter. Further studies showed that two amino acid residues (Phe147, Phe182) in the PAH1 domain of Sin3a are essential for Sin3a-Tet1 interaction and its activity in regulating pluripotency. Furthermore, genome-wide analyses of Sin3a, Tet1 and Pol II ChIP-seq and of 5mC MeDIP-seq revealed that Sin3a acted with Tet1 to facilitate the transcription of a set of their co-target genes. These results link Sin3a to epigenetic DNA modifications in transcriptional activation and have implications for understanding mechanisms underlying versatile functions of Sin3a in mouse ESCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo , Camundongos , Proteína Nodal/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3
11.
Biochem Biophys Res Commun ; 501(2): 380-386, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29709478

RESUMO

Homeobox-containing 1 (HMBOX1) has been described as a transcription factor involved in the occurrence of some tumors, but its roles in ovarian cancer have never been reported. Here we aimed to investigate the roles of HMBOX1 on high-grade serous ovarian carcinoma (HGSOC). In this present study, HMBOX1 expression was decreased in HGSOC tissues and ovarian cancer cell lines (HO8910 and A2780) compared with ovarian surface epithelial tissues or normal human ovarian surface epithelial cell line (HOSEpiC). The cell proliferation of HOSEpiC was weaker than ovarian cancer cell lines. By altering the expression of HMBOX1 in A2780 and HOSEpiC, we demonstrated that HMBOX1 inhibited the cell proliferation and promoted the cell apoptosis. Furthermore, our study revealed that HMBOX1 downregulated the expression of anti-apoptotic proteins (Bcl-2, Bcl-xL), raised the expression of pro-apoptotic-regulated proteins (Bad, Bax), apoptotic executionior (Caspase3), and P53. In conclusion, HMBOX1 played important roles in occurrence of HGSOC through regulation of proliferation and apoptosis, which implied that HMBOX1 might serve as a new therapeutic target for HGSOC.


Assuntos
Cistadenocarcinoma Seroso/patologia , Proteínas de Homeodomínio/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Apoptose/fisiologia , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Ovarianas/genética
12.
Anal Bioanal Chem ; 410(28): 7285-7293, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30218124

RESUMO

A molecular beacon (MB) is an oligonucleotide hybridization probe with a hairpin-shaped structure that leads to specific and instantaneous nucleic acid hybridization, enabling a variety of applications. However, integration of additional module sequences interferes with the performance of MBs and increases the complexity of sequence design. Herein, we develop and characterize a toehold integrated molecular beacon (ToMB) strategy for nucleic acid hybridization, where the reaction rate can be flexibly regulated by a target-induced MB conformational switch. Using this basic mechanism, the ToMB is capable of identifying nucleic acids with high specificity and a wider linearity range compared with the conventional molecular beacon system. We further applied the ToMB to the construction of a hybridization chain reaction system and a basic OR logic gate VJHto explore its programmability and versatility. Our results strongly suggest that the novel ToMB can act as a powerful nano-module to construct universal and multifunctional biosensors or molecular computations. Graphical abstract Molecular beacon is employed as a flexible and switchable spacer to control the toehold-mediated strand displacement reaction.


Assuntos
Hibridização de Ácido Nucleico/métodos , Oligonucleotídeos/química , Técnicas Biossensoriais , DNA/química , DNA/genética , Fluorescência , Cinética , Conformação de Ácido Nucleico , Sensibilidade e Especificidade , Termodinâmica
13.
Circulation ; 134(24): 1991-2007, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27803037

RESUMO

BACKGROUND: Myocardial infarction is one of the leading causes of morbidity and mortality worldwide, triggering irreversible myocardial cell damage and heart failure. The role of low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) as coreceptors of the Wnt/ß-catenin pathway in the adult heart remain unknown. Insulin-like growth factor binding protein 4 and dickkopf-related protein 1 (Dkk1) are 2 secreted LRP5/6 binding proteins that play a crucial role in heart development through preventing Wnt/ß-catenin pathway activation. However, their roles in the adult heart remain unexplored. METHODS: To understand the role of LRP5/6 and ß-catenin in the adult heart, we constructed conditional cardiomyocyte-specific LRP5/6 and ß-catenin knockout mice and induced surgical myocardial infarction. We also directly injected recombinant proteins of insulin-like growth factor binding protein 4 and Dkk1 into the heart immediately following myocardial infarction to further examine the mechanisms through which these proteins regulate LRP5/6 and ß-catenin. RESULTS: Deletion of LRP5/6 promoted cardiac ischemic insults. Conversely, deficiency of ß-catenin, a downstream target of LRP5/6, was beneficial in ischemic injury. It is interesting to note that although both insulin-like growth factor binding protein 4 and Dkk1 are secreted Wnt/ß-catenin pathway inhibitors, insulin-like growth factor binding protein 4 protected the ischemic heart by inhibiting ß-catenin, whereas Dkk1 enhanced the injury response mainly through inducing LRP5/6 endocytosis and degradation. CONCLUSIONS: Our findings reveal previously unidentified dual roles of LRP5/6 involved in the cardiomyocyte response to ischemic injury. These findings suggest new therapeutic strategies in ischemic heart disease by fine-tuning LRP5/6 and ß-catenin signaling within the Wnt/ß-catenin pathway.


Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Isquemia Miocárdica/patologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Histonas/metabolismo , Peróxido de Hidrogênio/toxicidade , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/genética
14.
Br J Cancer ; 117(8): 1139-1153, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017179

RESUMO

BACKGROUND: Although inhibition of SGK1 has been shown to delay cancer progression, the underlying mechanisms have not yet been elucidated. METHODS: We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by flow cytometry, western blotting, immunofluorescence, transmission electron microscopy and immunohistochemistry. RESULTS: In the present study, we demonstrated that SGK1 inhibition, mediated by either GSK650394 or SGK1 shRNA, induced G2/M arrest, apoptosis and autophagy. Furthermore, 3MA-mediated autophagy inhibition attenuated SGK1 inhibition-induced apoptosis, suggesting that induction of autophagy precedes apoptosis. Moreover, ectopic expression of SGK1 significantly attenuated the GSK650394-induced effects. Suppression of mTOR and Foxo3a phosphorylation is critical for blockade of SGK1-induced autophagy and apoptosis, at least partially via pFoxo3a (S253)-LC3 and pFoxo3a (S253)-p27 interactions. Dual inhibition of mTOR and SGK1 enhances autophagy activation and leads to synergistic cytocidal effects in PCa cells. CONCLUSIONS: In summary, our findings show that SGK1 inhibition exhibits significant antitumour effects against PCa in vitro and in vivo. This study uncovered a novel mechanism of SGK1 inhibition in PCa, which is mediated, at least in part, by inducing autophagy-dependent apoptosis via the mTOR-Foxo3a pathway.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Apoptose/genética , Autofagia/genética , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Imunofluorescência , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Proteínas Imediatamente Precoces/genética , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Electrophoresis ; 36(20): 2509-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26109527

RESUMO

A novel fluorescence detection system for CE was described and evaluated. Two miniature laser pointers were used as the excitation source. A Y-style optical fiber was used to transmit the excitation light and a four-branch optical fiber was used to collect the fluorescence. The optical fiber and optical filter were imported into a photomultiplier tube without any extra fixing device. A simplified PDMS detection cell was designed with guide channels through which the optical fibers were easily aligned to the detection window of separation capillary. According to different requirements, laser pointers and different filters were selected by simple switching and replacement. The fluorescence from four different directions was collected at the same detecting point. Thus, the sensitivity was enhanced without peak broadening. The fluorescence detection system was simple, compact, low-cost, and highly sensitive, with its functionality demonstrated by the separation and determination of red dyes and fluorescent whitening agents. The detection limit of rhodamine 6G was 7.7 nM (S/N = 3). The system was further applied to determine illegal food dyes. The CE system is potentially eligible for food safety analysis.


Assuntos
Eletroforese Capilar/instrumentação , Análise de Alimentos/instrumentação , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Corantes Fluorescentes , Análise de Alimentos/métodos , Limite de Detecção , Fibras Ópticas
16.
Anal Bioanal Chem ; 406(5): 1551-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24343453

RESUMO

A method was developed to sensitively determine safranine T in wolfberry by molecularly imprinted solid-phase extraction (MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC-LIF). The MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using safranine T, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions and the morphologies of inner polymers were characterized by scanning electron microscopy (SEM). The mean recoveries of safranine T in wolfberry ranged from 91.2 % to 92.9 % and the intraday and interday relative standard deviation (RSD) values all ranged from 3.4 % to 4.2 %. Good linearity was obtained over 0.001-1.0 µg mL(-1) (r = 0.9999) with a detection limit (S/N = 3) of 0.4 ng g(-1). Under the selected conditions, enrichment factors of over 90-fold were obtained and the extraction on the monolithic column effectively cleaned up the wolfberry matrix. The results demonstrated that the proposed MISPE-HPLC-LIF method could be applied to sensitively determine safranine T in wolfberry.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Lycium/química , Impressão Molecular , Fenazinas/isolamento & purificação , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Metacrilatos/química , Extração em Fase Sólida
17.
Plant Commun ; 5(2): 100722, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742072

RESUMO

Centromere positioning and organization are crucial for genome evolution; however, research on centromere biology is largely influenced by the quality of available genome assemblies. Here, we combined Oxford Nanopore and Pacific Biosciences technologies to de novo assemble two high-quality reference genomes for Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79). Compared with previously published reference genomes, our assemblies show substantial improvements, with the contig N50 improved by 4.6-fold and 5.6-fold, respectively, and thus represent the most complete cotton genomes to date. These high-quality reference genomes enable us to characterize 14 and 5 complete centromeric regions for G. hirsutum and G. barbadense, respectively. Our data revealed that the centromeres of allotetraploid cotton are occupied by members of the centromeric repeat for maize (CRM) and Tekay long terminal repeat families, and the CRM family reshapes the centromere structure of the At subgenome after polyploidization. These two intertwined families have driven the convergent evolution of centromeres between the two subgenomes, ensuring centromere function and genome stability. In addition, the repositioning and high sequence divergence of centromeres between G. hirsutum and G. barbadense have contributed to speciation and centromere diversity. This study sheds light on centromere evolution in a significant crop and provides an alternative approach for exploring the evolution of polyploid plants.


Assuntos
Genoma de Planta , Gossypium , Gossypium/genética , Genoma de Planta/genética , Poliploidia , Centrômero/genética
18.
Biosens Bioelectron ; 262: 116528, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38943855

RESUMO

To enhance the precision and reliability of early disease detection, especially in malignancies, an exhaustive investigation of multi-target biomarkers is essential. In this study, an advanced integrated electrochemical biosensor array that demonstrates exceptional performance was constructed. This biosensor was developed through a controllable porous-size mechanism and in-situ modification of carbon nanotubes (CNTs) to quantify multiplex biomarkers-specifically, C-reaction protein (CRP), carbohydrate antigen 125 (CA125), and carcinoembryonic antigen (CEA)-in human serum plasma. The fabrication process involved creating a highly ordered three-dimensional inverse-opal structure with the CNTs (pCNTs) modifier through microdroplet-based microfluidics, confined spatial self-assembly of nanoparticles, and chemical wet-etching. This innovative approach allowed for direct in-situ modification of nanomaterial onto the surface of electrode array, eliminating secondary transfer and providing exceptional control over structure and stability. The outstanding electrochemical performance was achieved through the synergistic effect of the pCNTs nanomaterial, aptamer, and horseradish peroxidase-labeled (HRP-) antibody. Additionally, the integrated biosensor array platform comprised multiple individually addressable electrode units (n = 11), enabling simultaneous multi-parallel/target testing, thereby ensuring accuracy and high throughput. Crucially, this integrated biosensor array accurately quantified multiplex biomarkers in human serum, yielding results comparable to commercial methods. This integrated technology holds promise for point-of-care testing (POCT) in early disease diagnosis and biological analysis.

19.
Talanta ; 272: 125735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364556

RESUMO

Accurate and precise detection of disease-associated proteins, such as C-reactive protein (CRP), remains a challenge in biosensor development. Herein, we present a novel approach-an integrated disposable aptasensor array-designed for precise, ultra-sensitive, and parallel detection of CRP in plasma samples. This integrated biosensing array platform enables multiplex parallel testing, ensuring the accuracy and reliability in sample analysis. The ultra-sensitivity of this biosensor is achieved through multiplex signal amplification. Leveraging the superior conductivity and extensive surface area of MOF-derived nanoporous carbon material (CMOF), the biosensor enhances recognition elements (aptamers) by catalyzing the horseradish peroxidase (HRP) label enzyme reaction to multiply the number of probe molecules. Optimized conditions yielded exceptional performance, exhibiting high accuracy (relative standard deviation, RSD≤10.0 %), a low detection limit (0.3 pg/mL, S/N = 3), ultra-sensitivity (0.16 µA/ng mL-1 mm-2), and a rapid response (seven parallel tests within 60 min). Importantly, this multi-unit integrated disposable aptasensor array accurately quantified CRP in human serum, demonstrating comparable results to commercial enzyme-linked immunosorbent assay (ELISA). This technology showcases promise for detecting various biomarkers using a unified approach, presenting an appealing strategy for early disease diagnosis and biological analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Proteína C-Reativa , Aptâmeros de Nucleotídeos/química , Carbono , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro/química , Nanopartículas Metálicas/química
20.
J Sep Sci ; 36(21-22): 3608-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23996859

RESUMO

A novel method combining molecular imprinting and SPE was developed in a capillary column for the determination of auramine O in shrimp. The capillary monolithic column was prepared by UV-initiated in situ polymerization, using auramine O as template and methacrylic acid and ethylene dimethacrylate as functional monomer and cross-linker, respectively. The properties of the prepared capillary monolithic column were investigated under the optimized conditions coupled with HPLC, and then the morphologies of the inner polymers were characterized by SEM. The calibration curve was expressed as A = 103C + 19.8 (r = 0.9992) with a linear range of 0.25-25.0 µg/mL, and the recoveries of auramine O at different concentrations in shrimp ranged from 90.5 to 92.4% with RSDs ranging from 2.1 to 4.4%. The capacities of the molecularly imprinted polymer and nonimprinted polymer columns were 0.722 and 0.147 µg/mg, respectively, and the LOD (S/N = 3) of auramine O in shrimp was 17.85 µg/kg. Under the selected conditions, the enrichment factors obtained were higher than 70-fold. The results indicate that the prepared molecularly imprinted capillary monolithic column was reliable and applicable to the analysis of auramine O in shrimp.


Assuntos
Benzofenoneídio/análise , Decápodes/química , Impressão Molecular , Extração em Fase Sólida/instrumentação , Animais , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA