Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234972

RESUMO

Knoxia roxburghii (Spreng.) M. A. Rau (KR) is a plant clinically used in traditional Chinese medicine (TCM) for the treatment of cancer. The study objectives were to examine the effects of KR extracts, petroleum ether (PET), ethyl acetate (EtoAc), butanol (n-BuOH), and H2O-soluble fractions (HSF) of the 75% EtOH extraction on A549 (non-small cell lung cancer), HepG2 (liver cancer), HeLa (cervical cancer), MCF-7 (breast cancer), and L02 (normal hepatocyte) cells. It was found that HSF exhibited the strongest cytotoxic activity against MCF-7 cells, and was accompanied by reduced mitochondrial transmembrane potential, increased levels of intra-cellular reactive oxygen species (ROS) and activated caspases, and upregulated pro-apoptotic and downregulated anti-apoptotic proteins. LC-MS analysis further showed that HSF primarily consisted of calycosin, aloe emodin, rein, maackiain, asperuloside, orientin, vicenin-2, and kaempferide, which have been mostly reported for anti-tumor activity in previous studies. In summary, the current study illustrated the effect, mechanism, and the potential major active components of KR against breast cancer.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Rubiaceae , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Butanóis , Caspases/metabolismo , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Rubiaceae/metabolismo
2.
Phys Chem Chem Phys ; 23(36): 20666-20674, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515274

RESUMO

Recently, palladium diselenide (PdSe2) has emerged as a promising material with potential applications in electronic and optoelectronic devices due to its intriguing electronic and optical properties. The performance of the device is strongly dependent on the charge-carrier dynamics and the related hot phonon behavior. Here, we investigate the photoexcited-carrier dynamics and coherent acoustic phonon (CAP) oscillations in mechanically exfoliated PdSe2 flakes with a thickness ranging from 10.6 nm to 54 nm using time-resolved non-degenerate pump-probe transient reflection (TR) spectroscopy. The results imply that the CAP frequency is thickness-dependent. Polarization-resolved transient reflection (PRTR) measurements reveal the isotropic charge-carrier relaxation dynamics and the CAP frequency in the 10.6 nm region. In addition, the deformation potential (DP) mechanism dominates the generation of the CAP. Moreover, a sound velocity of 6.78 × 103 m s-1 is extracted from the variation of the oscillation period with the flake thickness and the delay time of the acoustic echo. These results provide insight into the ultrafast optical coherent acoustic phonon and optoelectronic properties of PdSe2 and may open new possibilities for PdSe2 applications in THz-frequency mechanical resonators.

3.
J Cell Mol Med ; 24(14): 7907-7914, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32529705

RESUMO

Increased expression and activity of cardiac and circulating cathepsin D and soluble fms-like tyrosine kinase-1 (sFlt-1) have been demonstrated to induce and promote peripartum cardiomyopathy (PPCM) via promoting cleavage of 23-kD prolactin (PRL) to 16-kD PRL and neutralizing vascular endothelial growth factor (VEGF), respectively. We hypothesized that activation of Hes1 is proposed to suppress cathepsin D via activating Stat3, leading to alleviated development of PPCM. In the present study, we aimed to investigate the role of Notch1/Hes1 pathway in PPCM. Pregnant mice between prenatal 3 days and postpartum 3 weeks were fed with LY-411575 (a notch inhibitor, 10 mg/kg/d). Ventricular function and pathology were evaluated by echocardiography and histological analysis. Western blotting analysis was used to examine the expression at the protein level. The results found that inhibition of Notch1 significantly promoted postpartum ventricular dilatation, myocardial hypertrophy and myocardial interstitial fibrosis and suppressed myocardial angiogenesis. Western blotting analysis showed that inhibition of Notch1 markedly increased cathepsin D and sFlt-1, reduced Hes1, phosphorylated Stat3 (p-Stat3), VEGFA and PDGFB, and promoted cleavage of 23k-D PRL to 16-kD PRL. Collectively, inhibition of Notch1/Hes1 pathway induced and promoted PPCM via increasing the expressions of cathepsin D and sFlt-1. Notch1/Hes1 was a promising target for prevention and therapeutic regimen of PPCM.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Período Periparto/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Cardiomegalia/diagnóstico , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Catepsina D/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ecocardiografia , Feminino , Fibrose , Proteínas de Membrana/metabolismo , Camundongos , Gravidez , Proteólise , Remodelação Ventricular
4.
Small ; 16(50): e2003593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230902

RESUMO

Achieving multifunctional van der Waals nanoelectronic devices on one structure is essential for the integration of 2D materials; however, it involves complex architectural designs and manufacturing processes. Herein, a facile, fast, and versatile laser direct write micro/nanoprocessing to fabricate diode, NPN (PNP) bipolar junction transistor (BJT) simultaneously based on a pre-fabricated black phosphorus/molybdenum disulfide heterostructure is demonstrated. The PN junctions exhibit good diode rectification behavior. Due to different carrier concentrations of BP and MoS2 , the NPN BJT, with a narrower base width, renders better performance than the PNP BJT. Furthermore, the current gain can be modulated efficiently through laser writing tunable base width WB , which is consistent with the theoretical results. The maximum gain for NPN and PNP is found to be ≈41 (@WB ≈600 nm) and ≈12 (@WB ≈600 nm), respectively. In addition, this laser write processing technique also can be utilized to realize multifunctional WSe2 /MoS2 heterostructure device. The current work demonstrates a novel, cost-effective, and universal method to fabricate multifunctional nanoelectronic devices. The proposed approach exhibits promise for large-scale integrated circuits based on 2D heterostructures.

5.
Clin Sci (Lond) ; 133(9): 1085-1096, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31040165

RESUMO

Nuclear receptor binding SET domain 2 (NSD2)-mediated metabolic reprogramming has been demonstrated to regulate oncogenesis via catalyzing the methylation of histones. The present study aimed to investigate the role of NSD2-mediated metabolic abnormality in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH rat model was established and infected with adeno-associated virus carrying short hairpin RNA (shRNA) targeting NSD2. Hemodynamic parameters, ventricular function, and pathology were evaluated by microcatheter, echocardiography, and histological analysis. Metabolomics changes in lung tissue were analyzed by LC-MS. The results showed that silencing of NSD2 effectively ameliorated MCT-induced PAH and right ventricle dysfunction, and partially reversed pathological remodeling of pulmonary artery and right ventricular hypertrophy. In addition, the silencing of NSD2 markedly reduced the di-methylation level of H3K36 (H3K36me2 level) and inhibited autophagy in pulmonary artery. Non-targeted LC-MS based metabolomics analysis indicated that trehalose showed the most significant change in lung tissue. NSD2-regulated trehalose mainly affected ABC transporters, mineral absorption, protein digestion and absorption, metabolic pathways, and aminoacyl-tRNA biosynthesis. In conclusion, we reveal a new role of NSD2 in the pathogenesis of PAH related to the regulation of trehalose metabolism and autophagy via increasing the H3K36me2 level. NSD2 is a promising target for PAH therapy.


Assuntos
Autofagia/fisiologia , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Histona-Lisina N-Metiltransferase/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertensão Arterial Pulmonar/genética , Animais , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Direita/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Monocrotalina/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos
6.
J Cell Mol Med ; 22(8): 3816-3824, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29808534

RESUMO

Myocardial fibrosis after myocardial infarction (MI) is a leading cause of heart diseases. MI activates cardiac fibroblasts (CFs) and promotes CF to myofibroblast transformation (CMT). This study aimed to investigate the role of miR-21 in the regulation of CMT and myocardial fibrosis. Primary rat CFs were isolated from young SD rats and treated with TGF-ß1, miR-21 sponge or Jagged1 siRNA. Cell proliferation, invasion and adhesion were detected. MI model was established in male SD rats using LAD ligation method and infected with recombinant adenovirus. The heart function and morphology was evaluated by ultrasonic and histological analysis. We found that TGF-ß1 induced the up-regulation of miR-21 and down-regulation of Jagged1 in rat CFs. Luciferase assay showed that miR-21 targeted 3'-UTR of Jagged1 in rat CFs. miR-21 sponge inhibited the transformation of rat CFs into myofibroblasts, and abolished the inhibition of Jagged1 mRNA and protein expression by TGF-ß1. Furthermore, these effects of miR-21 sponge on rat CFS were reversed by siRNA mediated knockdown of Jagged1. In vivo, heart dysfunction and myocardial fibrosis in MI model rats were partly improved by miR-21 sponge but were aggravated by Jagged1 knockdown. Taken together, these results suggest that miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. miR-21 and Jagged1 are potential therapeutic targets for myocardial fibrosis.

7.
Opt Express ; 26(26): 33895-33905, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650821

RESUMO

The ultrafast nonlinear optical properties of bulk TlGaS2 crystal, a semiconductor with a layered structure, are studied by combining intensity dependent transmission, time-resolved transient absorption, and optical Kerr effect coupled to optical heterodyne detection. TlGaS2 demonstrates obvious two-photon absorption and electronic nonlinearities at 800 nm. The two-photon absorption coefficient and the nonlinear refractive index are determined to be of the order of 10-10 cm/W and 10-14 cm2/W, respectively. Furthermore, both the real and imaginary parts of the complex third-order susceptibility tensor elements are extracted. The large ultrafast optical nonlinearities make TlGaS2 a promising material for application in photonic techniques.

8.
J Am Chem Soc ; 139(11): 3954-3957, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28248096

RESUMO

It is known that CH3NH3PbI3 is particularly promising for next-generation solar devices; therefore, molecular perovskite structures have recently received extraordinary attention from the academic community because of their potential in producing unique physical properties. However, although great efforts have been made, molecular ferroelectrics with three-dimensional (3D) perovskite structures are still rare. So far, reported perovskite-like molecular ferroelectrics are basically one- or two-dimensional, significantly deviating from the inorganic perovskite ferroelectrics. Thus, their ferroelectric properties have to be greatly improved to meet the requirements of practical applications. Here, we report a 3D molecular perovskite ferroelectric: (3-ammoniopyrrolidinium)RbBr3 [(AP)RbBr3], with a high Curie temperature (Tc = 440 K) beyond that of BaTiO3. To the best of our knowledge, such above-room-temperature ferroelectricity in the 3D molecular perovskite compound is unprecedented. Furthermore, (AP)RbBr3 has great potential for applications due to its high thermal stability, ultrafast polarization reversal (greater than 20 kHz), and fascinating multiaxial characteristic. This finding opens a new avenue to the design and controllable synthesis of molecular ferroelectric perovskites, where the metal ion, halogen ion, and organic cation can be easily tuned.

9.
Sensors (Basel) ; 17(2)2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28125011

RESUMO

Protein-protein interactions play an important role in the investigation of biomolecules. In this paper, we reported on the use of a reduced graphene oxide microshell (RGOM)-based optical biosensor for the determination of goat anti-rabbit IgG. The biosensor was prepared through a self-assembly of monolayers of monodisperse polystyrene microspheres, combined with a high-temperature reduction, in order to decorate the RGOM with rabbit IgG. The periodic microshells allowed a simpler functionalization and modification of RGOM with bioreceptor units, than reduced graphene oxide (RGO). With additional antibody-antigen binding, the RGOM-based biosensor achieved better real-time and label-free detection. The RGOM-based biosensor presented a more satisfactory response to goat anti-rabbit IgG than the RGO-based biosensor. This method is promising for immobilizing biomolecules on graphene surfaces and for the fabrication of biosensors with enhanced sensitivity.


Assuntos
Técnicas Biossensoriais , Animais , Anticorpos , Grafite , Óxidos , Coelhos
10.
Nanotechnology ; 27(9): 095301, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26822121

RESUMO

Graphene has been extensively investigated for its use in flexible electronics, especially graphene synthesized by chemical vapor deposition (CVD). To enhance the flexibility of CVD graphene, wrinkles are often introduced. However, reports on the flexibility of reduced graphene oxide (RGO) films are few, because of their weak conductivity and, in particular, poor flexibility. To improve the flexibility of RGO, reduced graphene oxide nanoshells are fabricated, which combine self-assembled polystyrene nanosphere arrays and high-temperature thermal annealing processes. The resulting RGO films with nanoshells present a better resistance stabilization after stretching and bending the devices than RGO without nanoshells. The sustainability and performance advances demonstrated here are promising for the adoption of flexible electronics in a wide variety of future applications.

11.
Opt Express ; 23(19): 24177-88, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406624

RESUMO

The polarization dependence of transient optical reflection, induced by nonequilibrium carriers isotropically distributed in momentum space, of graphene on substrate is experimentally and theoretically investigated. It is found that this transient optical reflection could be made greatly polarization dependent by using oblique incidence for light, and the characteristic of this polarization dependence could be flexibly altered with incident angle and incident direction (from graphene to substrate, or from substrate to graphene). Our results suggest that through polarization of incident beam is an efficient way of manipulating graphene transient optical reflection.

12.
Nano Lett ; 14(6): 3563-9, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24793578

RESUMO

On the basis of the polarization-dependent absorption of graphene under total internal reflection, we designed a graphene-based optical refractive index sensor with high resolution of 1.7 × 10(-8) and sensitivity of 4.3 × 10(7) mV/RIU, as well as an extensive dynamic range. This highly sensitive graphene optical sensor enables label-free, live-cell, and highly accurate detection of a small quantity of cancer cells among normal cells at the single-cell level and the simultaneous detection and distinction of two cell lines without separation. It provides an accurate statistical distribution of normal and cancer cells with fewer cells. This facile and highly sensitive sensing refractive index may expand the practical applications of the biosensor.

13.
Opt Express ; 22(5): 5037-42, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663842

RESUMO

This paper firstly demonstrated the refractive index (RI) characteristics of a singlemode-claddingless-singlemode fiber structure filter based fiber ring cavity laser sensing system. The experiment shows that the lasing wavelength shifts to red side with the ambient RI increase. Linear and parabolic fitting are both done to the measurements. The linear fitting result shows a good linearity for applications in some areas with the determination coefficient of 0.993. And a sensitivity of ~131.64nm/RIU is experimentally achieved with the aqueous solution RI ranging from 1.333 to 1.3707, which is competitively compared to other existing fiber-optic sensors. While the 2 order polynomial fitting function, which determination relationship is higher than 0.999, can be used to some more rigorous monitoring. The proposed fiber laser has a SNR of ~50dB, and 3dB bandwidth ~0.03nm.

14.
Opt Express ; 22(9): 10239-47, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921727

RESUMO

Using a two-layer structure consisting of polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS) to support graphene grown by chemical vapor deposition (CVD), we demonstrate a flexible integrated graphene saturable absorber (SA) on microfiber for passive mode-locked soliton fiber laser. This method can optimize the light-graphene interaction by using evanescent field in the integration structure. Moreover, the fiber laser with the in-line microfiber-to-graphene SA can realize the tunabilities of both the 3dB bandwidth of output optical spectrum and the pulse width of soliton. This tunable mode-locked soliton laser has potential applications in optical communication, optical microscopy, and so on.

15.
Opt Lett ; 39(19): 5574-7, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360931

RESUMO

A giant Goos-Hänchen (G-H) shift in graphene has been theoretically predicted by previous research. In this Letter, we present experimental measurements of the G-H shift in graphene, in a total internal reflection condition, using a new method we have named "the beam splitter scanning method." Our results show that a focused light source undergoes significant lateral shift when the polarization of incident light changes from transverse magnetic (TM) to transverse electric (TE) mode, indicating a large G-H shift in graphene that is polarization-dependent. We also observed that the difference in the G-H shift for TM versus TE modes (S(TM)-S(TE)) increases with increasing thickness of graphene material. A maximum difference (S(TM)-S(TE)) of 31.16 µm was observed, which is a significant result. Based on this research, the ability to engineer giant G-H shifts in graphene material has now been experimentally confirmed for the first time to the best of our knowledge. We expect that this result will lead to significant new and interesting applications of graphene in various types of optical sensors, and more.

16.
Nanotechnology ; 25(45): 455707, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25338947

RESUMO

We have developed a method to tune polarization-dependent optical absorption of large-scale chemical vapor deposition (CVD) graphene under total internal reflection (TIR) by strain engineering. Through control of the strain direction, the optical absorption of graphene for transverse magnetic or transverse electric waves can be separately tuned. Strain-induced modulation of the optical absorption has been theoretically expected when light is normally incident through graphene. Under TIR, however, we experimentally observed a significant increase in the strain-induced tunability of optical absorption for CVD graphene, with the modulation efficiency of optical absorption in monolayer graphene increasing by a factor of three times that for normal incidence. We conclude that the strain sensitivity of optical absorption of graphene under TIR offers significant potential for application in many areas such as ultra-thin optical devices and strain sensors.

17.
Opt Express ; 21(6): 7511-20, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546133

RESUMO

The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.


Assuntos
Grafite/química , Óxidos/química , Refratometria/métodos , Absorção , Grafite/efeitos da radiação , Luz , Teste de Materiais , Dinâmica não Linear , Óxidos/efeitos da radiação , Espalhamento de Radiação
18.
Opt Express ; 21(21): 25277-84, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150368

RESUMO

A versatile solid Poly-methyl-methacrylate (PMMA) composite containing porphyrin-covalently functionalized multi-walled carbon nanotubes (MWNTs-TPP) was prepared through free radical polymerization without additional dispersion stabilizer. Using nanosecond, femtosecond pulse Z-scan and degenerate femtosecond pump-probe techniques, we studied the optical limiting effect, ultrafast saturable absorption and transient differential transmission of the composite. Results show that the solid composite exhibits weaker optical limiting effects than that of the suspension at 532 nm under nanosecond pulse, due to the absence of nonlinear scattering mechanism. The composite also shows ultrafast saturable absorption with a relaxation time about 190 fs at 800 nm under femtosecond pulse due to band-filling effect, comparably to the suspension. The versatile solid composite can be the candidate for uses in applications of ultrafast optical switching and mode-locking element or optical limiter for nanosecond pulse.

19.
Adv Mater ; 35(21): e2300632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36916201

RESUMO

Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.

20.
Sci Adv ; 9(37): eadi5104, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713483

RESUMO

As the most promising candidates for the implementation of in-sensor computing, retinomorphic vision sensors can constitute built-in neural networks and directly implement multiply-and-accumulation operations using responsivities as the weights. However, existing retinomorphic vision sensors mainly use a sustained gate bias to maintain the responsivity due to its volatile nature. Here, we propose an ion-induced localized-field strategy to develop retinomorphic vision sensors with nonvolatile tunable responsivity in both positive and negative regimes and construct a broadband and reconfigurable sensory network with locally stored weights to implement in-sensor convolutional processing in spectral range of 400 to 1800 nanometers. In addition to in-sensor computing, this retinomorphic device can implement in-memory computing benefiting from the nonvolatile tunable conductance, and a complete neuromorphic visual system involving front-end in-sensor computing and back-end in-memory computing architectures has been constructed, executing supervised and unsupervised learning tasks as demonstrations. This work paves the way for the development of high-speed and low-power neuromorphic machine vision for time-critical and data-intensive applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA