RESUMO
Type I interferons (IFNs) are the first frontline of the host innate immune response against invading pathogens. Herein, we characterized an unknown protein encoded by phospholipase A2 inhibitor and LY6/PLAUR domain-containing (PINLYP) gene that interacted with TBK1 and induced type I IFN in a TBK1- and IRF3-dependent manner. Loss of PINLYP impaired the activation of IRF3 and production of IFN-ß induced by DNA virus, RNA virus, and various Toll-like receptor ligands in multiple cell types. Because PINLYP deficiency in mice engendered an early embryonic lethality in mice, we generated a conditional mouse in which PINLYP was depleted in dendritic cells. Mice lacking PINLYP in dendritic cells were defective in type I IFN induction and more susceptible to lethal virus infection. Thus, PINLYP is a positive regulator of type I IFN innate immunity and important for effective host defense against viral infection.
Assuntos
Células Dendríticas/imunologia , Inibidores Enzimáticos/imunologia , Imunidade Inata , Interferon beta/imunologia , Animais , Linhagem Celular , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Vírus de DNA/genética , Vírus de DNA/imunologia , Humanos , Interferon beta/genética , Camundongos , Camundongos Knockout , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , Vírus de RNA/genética , Vírus de RNA/imunologiaRESUMO
Gammaherpesviruses have evolved various strategies to take advantage of host cellular factors or signaling pathways to establish a lifelong latent infection. Like the human gammaherpesvirus Epstein-Barr virus, murine gammaherpesvirus 68 (MHV68) establishes and maintains latency in the memory B cells during infection of laboratory mice. We have previously shown that MHV68 can immortalize fetal liver-derived B cells that induce lymphomas when injected into immunodeficient mice. Here we identify interleukin 16 (IL16) as a most abundantly expressed cytokine in MHV68-immortalized B cells and show that MHV68 infection elevates IL16 expression. IL16 is not important for MHV68 lytic infection but plays a critical role in MHV68 reactivation from latency. IL16 deficiency increases MHV68 lytic gene expression in MHV68-immortalized B cells and enhances reactivation from splenic latency. Correlatively, IL16 deficiency increases the frequency of MHV68-infected plasma cells that can be attributed to enhanced MHV68 reactivation. Furthermore, similar to TPA-mediated lytic replication of Kaposi's sarcoma-associated herpesvirus, IL16 deficiency markedly induces Tyr705 STAT3 de-phosphorylation and elevates p21 expression, which can be counteracted by the tyrosine phosphatase inhibitor orthovanadate. Importantly, orthovanadate strongly blocks MHV68 lytic gene expression mediated by IL16 deficiency. These data demonstrate that virus-induced IL16 does not directly participate in MHV68 lytic replication, but rather inhibits virus reactivation to facilitate latent infection, in part through the STAT3-p21 axis.
Assuntos
Infecções por Herpesviridae/metabolismo , Interleucina-16/metabolismo , Infecções Tumorais por Vírus/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Linfócitos B/virologia , Infecções por Herpesviridae/imunologia , Interleucina-16/imunologia , Linfoma/virologia , Camundongos , Rhadinovirus/imunologia , Rhadinovirus/metabolismoRESUMO
The stress-induced unfolded protein response (UPR) in the endoplasmic reticulum (ER) involves various signaling cross-talks and controls cell fate. B-cell receptor (BCR) signaling, which can trigger UPR, induces gammaherpesvirus lytic replication and serves as a physiological mechanism for gammaherpesvirus reactivation in vivo However, how the UPR regulates BCR-mediated gammaherpesvirus infection is unknown. Here, we demonstrate that the ER stressors tunicamycin and thapsigargin inhibit BCR-mediated murine gammaherpesvirus 68 (MHV68) lytic replication by inducing expression of the UPR mediator Bip and blocking activation of Akt, ERK, and JNK. Both Bip and the downstream transcription factor ATF4 inhibited BCR-mediated MHV68 lytic gene expression, whereas UPR-induced C/EBP homologous protein (CHOP) was required for and promoted BCR-mediated MHV68 lytic replication by suppressing upstream Bip and ATF4 expression. Bip knockout was sufficient to rescue BCR-mediated MHV68 lytic gene expression in CHOP knockout cells, and this rescue was blocked by ectopic ATF4 expression. Furthermore, ATF4 directly inhibited promoter activity of the MHV68 lytic switch transactivator RTA. Altogether, we show that ER stress-induced CHOP inhibits Bip and ATF4 expression and that ATF4, in turn, plays a critical role in CHOP-mediated regulation of BCR-controlled MHV68 lytic replication. We conclude that ER stress-mediated UPR and BCR signaling pathways are interconnected and form a complex network to regulate the gammaherpesvirus infection cycle.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Linfócitos B/virologia , Estresse do Retículo Endoplasmático , Gammaherpesvirinae/fisiologia , Proteínas de Choque Térmico/metabolismo , Receptores de Antígenos de Linfócitos B/agonistas , Fator de Transcrição CHOP/metabolismo , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Animais , Antivirais/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Transformada , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Gammaherpesvirinae/efeitos dos fármacos , Gammaherpesvirinae/crescimento & desenvolvimento , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Lisogenia/efeitos dos fármacos , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia , Fator de Transcrição CHOP/antagonistas & inibidores , Fator de Transcrição CHOP/genética , Tunicamicina/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacosRESUMO
Metastasis causes breast cancer-related mortality. Tumor-infiltrating neutrophils (TINs) inflict immunosuppression and promote metastasis. Therapeutic debilitation of TINs may enhance immunotherapy, yet it remains a challenge to identify therapeutic targets highly expressed and functionally essential in TINs but under-expressed in extra-tumoral neutrophils. Here, using single-cell RNA sequencing to compare TINs and circulating neutrophils in murine mammary tumor models, we identified aconitate decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme in mouse TINs and validated high Acod1 expression in human TINs. Activated through the GM-CSF-JAK/STAT5-C/EBPß pathway, Acod1 produces itaconate, which mediates Nrf2-dependent defense against ferroptosis and upholds the persistence of TINs. Acod1 ablation abates TIN infiltration, constrains metastasis (but not primary tumors), bolsters antitumor T cell immunity, and boosts the efficacy of immune checkpoint blockade. Our findings reveal how TINs escape from ferroptosis through the Acod1-dependent immunometabolism switch and establish Acod1 as a target to offset immunosuppression and improve immunotherapy against metastasis.
Assuntos
Neoplasias da Mama , Carboxiliases , Ferroptose , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Neutrófilos , Carboxiliases/metabolismo , Melanoma Maligno CutâneoRESUMO
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor that shows marked efficacy against many types of cancers and is approved to treat severe metastatic cutaneous T-cell lymphomas. In addition to its anticancer activity, SAHA has significant effects on the growth of many viruses. The effect of SAHA on replication of human cytomegalovirus (HCMV) has not, however, been investigated. Here, we showed that the replication of HCMV was significantly suppressed by treatment with SAHA at concentrations that did not show appreciable cytotoxicity. SAHA reduced transcription and protein levels of HCMV immediate early genes, showing that SAHA acts at an early stage in the viral life-cycle. RNA-sequencing data mining showed that numerous pathways and molecules were affected by SAHA. Interferon-mediated immunity was one of the most relevant pathways in the RNA-sequencing data, and we confirmed that SAHA inhibits HCMV-induced IFN-mediated immune responses using quantitative Real-time PCR (qRT-PCR). Fatty acid-binding protein 4 (FABP4), which plays a role in lipid metabolism, was identified by RNA-sequencing. We found that FABP4 expression was reduced by HCMV infection but increased by treatment with SAHA. We then showed that knockdown of FABP4 partially rescued the effect of SAHA on HCMV replication. Our data suggest that FABP4 contributes to the inhibitory effect of SAHA on HCMV replication.
Assuntos
Citomegalovirus , Inibidores de Histona Desacetilases , Replicação Viral/efeitos dos fármacos , Vorinostat , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Proteínas de Ligação a Ácido Graxo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologiaRESUMO
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.