Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37761609

RESUMO

Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions to the marginal likelihood. The Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach can be employed to jointly sample models and coefficients, but the effective design of the trans-dimensional jumps of RJMCMC can be challenging, making it hard to implement. Alternatively, the marginal likelihood can be derived conditional on latent variables using a data-augmentation scheme (e.g., Pólya-gamma data augmentation for logistic regression) or using other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear model and survival model, and estimating the marginal likelihood using a Laplace approximation or a correlated pseudo-marginal method can be computationally expensive. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distributions of generalised linear models and survival models. Secondly, in light of the recently proposed approximate Laplace approximation, we describe an efficient and accurate estimation method for marginal likelihood that involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing Rao-Blackwellised estimates with the combination of a warm-start estimate and the ergodic average. We present numerous numerical results from simulated data and eight high-dimensional genetic mapping data-sets to showcase the efficiency of the novel PARNI proposal compared with the baseline add-delete-swap proposal.

2.
J R Stat Soc Series B Stat Methodol ; 84(2): 496-523, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35910401

RESUMO

There is a tension between robustness and efficiency when designing Markov chain Monte Carlo (MCMC) sampling algorithms. Here we focus on robustness with respect to tuning parameters, showing that more sophisticated algorithms tend to be more sensitive to the choice of step-size parameter and less robust to heterogeneity of the distribution of interest. We characterise this phenomenon by studying the behaviour of spectral gaps as an increasingly poor step-size is chosen for the algorithm. Motivated by these considerations, we propose a novel and simple gradient-based MCMC algorithm, inspired by the classical Barker accept-reject rule, with improved robustness properties. Extensive theoretical results, dealing with robustness to tuning, geometric ergodicity and scaling with dimension, suggest that the novel scheme combines the robustness of simple schemes with the efficiency of gradient-based ones. We show numerically that this type of robustness is particularly beneficial in the context of adaptive MCMC, giving examples where our proposed scheme significantly outperforms state-of-the-art alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA