Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 94(8): 3629-3636, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167251

RESUMO

Nanospray desorption electrospray ionization mass spectrometry, a powerful ambient sampling and imaging technique, is herein coupled as an isolated source with 21 Tesla (21T) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Absorption-mode data, enabled by an external data acquisition system, is applied for improved mass resolution, accuracy, and dynamic range without compromising spectral acquisition rates. Isotopic fine structure (IFS) information is obtained from the ambient sampling of living Bacillus and Fusarium species, allowing for high confidence in molecular annotations with a resolution >830 k (at m/z 825). Tandem mass spectrometry experiments for biological samples are shown to retain the IFS in addition to gained fragmentation information, providing a further degree of annotation confidence from ambient analyses. Rat brain was imaged by nanospray desorption electrospray ionization (nano-DESI) 21T FTICR MS in ∼5 h using 768 ms transients, producing over 800 molecular annotations using the METASPACE platform and low-parts-per-billion mass accuracy at a spatial resolution of ∼25 × 180 µm. Finally, nano-DESI 21T FTICR MS imaging is demonstrated to reveal images corresponding to the IFS, as well as hundreds of additional molecular features (including demonstrated differences as low as 8.96 mDa) that are otherwise undetected by a more conventional imaging methodology.


Assuntos
Ciclotrons , Espectrometria de Massas por Ionização por Electrospray , Animais , Diagnóstico por Imagem , Análise de Fourier , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
2.
Anal Chem ; 94(15): 6017-6025, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35385261

RESUMO

Single-cell proteomics (SCP) has great potential to advance biomedical research and personalized medicine. The sensitivity of such measurements increases with low-flow separations (<100 nL/min) due to improved ionization efficiency, but the time required for sample loading, column washing, and regeneration in these systems can lead to low measurement throughput and inefficient utilization of the mass spectrometer. Herein, we developed a two-column liquid chromatography (LC) system that dramatically increases the throughput of label-free SCP using two parallel subsystems to multiplex sample loading, online desalting, analysis, and column regeneration. The integration of MS1-based feature matching increased proteome coverage when short LC gradients were used. The high-throughput LC system was reproducible between the columns, with a 4% difference in median peptide abundance and a median CV of 18% across 100 replicate analyses of a single-cell-sized peptide standard. An average of 621, 774, 952, and 1622 protein groups were identified with total analysis times of 7, 10, 15, and 30 min, corresponding to a measurement throughput of 206, 144, 96, and 48 samples per day, respectively. When applied to single HeLa cells, we identified nearly 1000 protein groups per cell using 30 min cycles and 660 protein groups per cell for 15 min cycles. We explored the possibility of measuring cancer therapeutic targets with a pilot study comparing the K562 and Jurkat leukemia cell lines. This work demonstrates the feasibility of high-throughput label-free single-cell proteomics.


Assuntos
Peptídeos , Proteoma , Cromatografia Líquida/métodos , Células HeLa , Humanos , Peptídeos/análise , Projetos Piloto , Proteoma/análise
3.
Anal Chem ; 92(15): 10588-10596, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32639140

RESUMO

Single-cell proteomics can provide critical biological insight into the cellular heterogeneity that is masked by bulk-scale analysis. We have developed a nanoPOTS (nanodroplet processing in one pot for trace samples) platform and demonstrated its broad applicability for single-cell proteomics. However, because of nanoliter-scale sample volumes, the nanoPOTS platform is not compatible with automated LC-MS systems, which significantly limits sample throughput and robustness. To address this challenge, we have developed a nanoPOTS autosampler allowing fully automated sample injection from nanowells to LC-MS systems. We also developed a sample drying, extraction, and loading workflow to enable reproducible and reliable sample injection. The sequential analysis of 20 samples containing 10 ng tryptic peptides demonstrated high reproducibility with correlation coefficients of >0.995 between any two samples. The nanoPOTS autosampler can provide analysis throughput of 9.6, 16, and 24 single cells per day using 120, 60, and 30 min LC gradients, respectively. As a demonstration for single-cell proteomics, the autosampler was first applied to profiling protein expression in single MCF10A cells using a label-free approach. At a throughput of 24 single cells per day, an average of 256 proteins was identified from each cell and the number was increased to 731 when the Match Between Runs algorithm of MaxQuant was used. Using a multiplexed isobaric labeling approach (TMT-11plex), ∼77 single cells could be analyzed per day. We analyzed 152 cells from three acute myeloid leukemia cell lines, resulting in a total of 2558 identified proteins with 1465 proteins quantifiable (70% valid values) across the 152 cells. These data showed quantitative single-cell proteomics can cluster cells to distinct groups and reveal functionally distinct differences.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Nanotecnologia/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Automação , Linhagem Celular Tumoral , Humanos
4.
Anal Chem ; 91(8): 5028-5035, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30821434

RESUMO

Mass spectrometry (MS) is an indispensable analytical tool to capture the array of metabolites within complex biological systems. However, conventional MS-based metabolomic workflows require extensive sample processing and separation resulting in limited throughput and potential alteration of the native molecular states in these systems. Ambient ionization methods, capable of sampling directly from tissues, circumvent some of these issues but require high-performance MS to resolve the molecular complexity within these samples. Here, we demonstrate a unique combination of laser ablation electrospray ionization (LAESI) coupled with a 21 tesla Fourier transform ion cyclotron resonance (21T-FTICR) for direct MS analysis and imaging applications. This analytical platform provides isotopic fine structure information directly from biological tissues, enabling the rapid assignment of molecular formulas and delivering a higher degree of confidence for molecular identification.


Assuntos
Glycine max/metabolismo , Lasers , Limite de Detecção , Imagem Molecular/métodos , Espectrometria de Massas por Ionização por Electrospray , Desenho de Equipamento , Imagem Molecular/instrumentação
5.
Anal Bioanal Chem ; 411(21): 5363-5372, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30397757

RESUMO

Mass spectrometry (MS)-based analysis of complex biological samples is essential for biomedical research and clinical diagnostics. The separation prior to MS plays a key role in the overall analysis, with separations having larger peak capacities often leading to more identified species and improved confidence in those identifications. High-resolution ion mobility (IM) separations enabled by Structures for Lossless Ion Manipulation (SLIM) can provide extremely rapid, high-resolution separations and are well suited as a second dimension of separation following nanoscale liquid chromatography (nanoLC). However, existing sample handling approaches for offline coupling of separation modes require microliter-fraction volumes and are thus not well suited for analysis of trace biological samples. We have developed a novel nanowell-mediated fractionation system that enables nanoLC-separated samples to be efficiently preconcentrated and directly infused at nanoelectrospray flow rates for downstream analysis. When coupled with SLIM IM-MS, the platform enables rapid and high-peak-capacity multidimensional separations of small biological samples. In this study, peptides eluting from a 100 nL/min nanoLC separation were fractionated into ~ 60 nanowells on a microfluidic glass chip using an in-house-developed robotic system. The dried samples on the chip were individually reconstituted and ionized by nanoelectrospray for SLIM IM-MS analysis. Using model peptides for characterization of the nanowell platform, we found that at least 80% of the peptide components of the fractionated samples were recovered from the nanowells, providing up to ~tenfold preconcentration for SLIM IM-MS analysis. The combined LC-SLIM IM separation peak capacities exceeded 3600 with a measurement throughput that is similar to current one-dimensional (1D) LC-MS proteomic analyses. Graphical abstract A nanowell-mediated multidimensional separation platform that combines nanoLC with SLIM IM-MS enables rapid, high-peak-capacity proteomic analyses.


Assuntos
Cromatografia de Fase Reversa/métodos , Nanotecnologia , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/análise
6.
Anal Chem ; 89(2): 1131-1137, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27973782

RESUMO

A new approach for constant-distance mode mass spectrometry imaging (MSI) of biological samples using nanospray desorption electrospray ionization (nano-DESI) was developed by integrating a shear-force probe with the nano-DESI probe. The technical concept and basic instrumental setup, as well as the general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enabled the constant-distance imaging mode via a computer-controlled closed-feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites, including nonribosomal peptides (surfactin, plipastatin, and iturin) on the surface of living bacterial colonies, ranging in diameter from 10 to 13 mm, with height variations up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Based on this effort, constant-mode nano-DESI MSI proved to be ideally suited for imaging biological samples of complex topography in their native states.

7.
Anal Chem ; 89(23): 12659-12665, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29120613

RESUMO

Ultrahigh resolution mass spectrometry, such as Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work, we describe software Formularity with a user-friendly interface for CIA function and newly developed search function Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenated organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. Tap water and HOC spike in Suwannee River NOM were used to assess HOC identification in complex environmental samples. Strategies for reconciliation of CIA and IPA assignments were discussed. Software and sample databases with documentation are freely available.

8.
ACS Meas Sci Au ; 3(6): 459-468, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145026

RESUMO

Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 µm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 µm from a 10 µm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 µm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.

9.
Anal Chem ; 84(19): 8351-6, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22954319

RESUMO

An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours by precisely controlling the distance between the sample and the nano-DESI probe. This is achieved by mounting the sample holder onto an automated XYZ stage, defining the tilt of the sample plane, and recalculating the vertical position of the stage at each point. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSI QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. Low background noise enables simultaneous detection of lipids and metabolites in the tissue section. High-resolution mass analysis combined with tandem mass spectometry (MS/MS) experiments enabled identification of the observed species. In addition, the high dynamic range (>2000) of the technique allowed us to generate ion images of low-abundance isobaric lipids. A high-spatial resolution image was acquired over a small region of the tissue section revealing the distribution of an abundant brain metabolite, creatine, on the boundary between the white and gray matter. The observed distribution is consistent with the literature data obtained using magnetic resonance spectroscopy.


Assuntos
Automação , Encéfalo/anatomia & histologia , Nanotecnologia , Software , Animais , Nanotecnologia/instrumentação , Ratos , Espectrometria de Massas por Ionização por Electrospray/instrumentação
10.
J Am Soc Mass Spectrom ; 32(9): 2490-2494, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374553

RESUMO

Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is an emerging method that has the potential to transform the field of metabolomics. This is in part due to LAESI-MS being an ambient ionization method that requires minimal sample preparation and uses (endogenous) water for in situ analysis. This application note details the employment of the "LAESI microscope" source to perform spatially resolved MS analysis of cells and MS imaging (MSI) of tissues at high spatial resolution. This source configuration utilizes a long-working-distance reflective objective that permits both visualization of the sample and a smaller LAESI laser beam profile than conventional LAESI setups. Here, we analyzed 200 single cells of Allium cepa (red onion) and imaged Fittonia argyroneura (nerve plant) in high spatial resolution using this source coupled to a Fourier transform mass spectrometer for high-mass-resolution and high-mass-accuracy metabolomics.


Assuntos
Metabolômica/métodos , Imagem Molecular/métodos , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Processamento de Imagem Assistida por Computador , Cebolas/citologia , Cebolas/metabolismo
11.
Metabolites ; 11(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801673

RESUMO

Single cell analysis is a field of increasing interest as new tools are continually being developed to understand intercellular differences within large cell populations. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is an emerging technique for single cell metabolomics. Over the years, it has been validated that this ionization technique is advantageous for probing the molecular content of individual cells in situ. Here, we report the integration of a microscope into the optical train of the LAESI source to allow for visually informed ambient in situ single cell analysis. Additionally, we have coupled this 'LAESI microscope' to a drift-tube ion mobility mass spectrometer to enable separation of isobaric species and allow for the determination of ion collision cross sections in conjunction with accurate mass measurements. This combined information helps provide higher confidence for structural assignment of molecules ablated from single cells. Here, we show that this system enables the analysis of the metabolite content of Allium cepa epidermal cells with high confidence structural identification together with their spatial locations within a tissue.

12.
Chem Sci ; 9(34): 6944-6951, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30210768

RESUMO

Multidimensional peptide separations can greatly increase the depth of coverage in proteome profiling. However, a major challenge for multidimensional separations is the requirement of large biological samples, often containing milligram amounts of protein. We have developed nanowell-mediated two-dimensional (2D) reversed-phase nanoflow liquid chromatography (LC) separations for in-depth proteome profiling of low-nanogram samples. Peptides are first separated using high-pH LC and the effluent is concatenated into 4 or 12 nanowells. The contents of each nanowell are reconstituted in LC buffer and collected for subsequent separation and analysis by low-pH nanoLC-MS/MS. The nanowell platform minimizes peptide losses to surfaces in offline 2D LC fractionation, enabling >5800 proteins to be confidently identified from just 50 ng of HeLa digest. Furthermore, in combination with a recently developed nanowell-based sample preparation workflow, we demonstrated deep proteome profiling of >6000 protein groups from small populations of cells, including ∼650 HeLa cells and 10 single human pancreatic islet thin sections (∼1000 cells) from a pre-symptomatic type 1 diabetic donor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA