RESUMO
We report a national Pseudomonas aeruginosa outbreak from a common source following piercings between July and September 2016 in England. The multi-agency outbreak investigation included active case finding, microbiological testing of environmental samples and case specimens including Variable Number Tandem Repeat (VNTR) typing and a retrospective cohort study. Overall, 162 outbreak cases (29 confirmed, 14 probable and 119 possible) and 14 non-outbreak cases were identified; all confirmed cases had ear piercings (93% cartilage). Outbreak cases were predominantly female (95%) and had a median age of 18 years (interquartile range: 13-56 years). Nineteen outbreak cases required surgery under general anaesthetic The same outbreak VNTR type (11,3,5,3,3,3,6,4,7) was isolated from bottles of an aftercare solution from a single manufacturer and in specimens from confirmed cases who attended eight different piercing studios supplied with this product. In the cohort study, use of aftercare solution was associated with becoming a case (aOR: 4.60, 95% confidence interval: 1.65-12.90). Environmental, microbiological and epidemiological investigations confirmed that contamination during production of aftercare solution was the source of this national outbreak; highlighting challenges in the regulation of a cosmetic products used in the piercing industry and that guidance on piercing aftercare may need to be reviewed.
Assuntos
Piercing Corporal/efeitos adversos , Surtos de Doenças , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , Infecção dos Ferimentos/microbiologia , Adolescente , Adulto , Assistência ao Convalescente , Estudos de Coortes , Inglaterra/epidemiologia , Feminino , Humanos , Repetições Minissatélites , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/isolamento & purificação , Estudos Retrospectivos , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/terapia , Adulto JovemRESUMO
Fludarabine plus cyclophosphamide (FC) is the chemotherapy backbone of modern chronic lymphocytic leukemia (CLL) treatment. CYP2B6 is a polymorphic cytochrome P450 isoform that converts cyclophosphamide to its active form. This study investigated the possible impact of genetic variation in CYP2B6 on response to FC chemotherapy in CLL. Available DNA samples from the LRF CLL4 trial, which compared chlorambucil, fludarabine, and FC, were screened by TaqMan real-time polymerase chain reaction assays for CYP2B6 SNPs c.516G>T and c.785A>G, which define the most common variant allele (*6). Among the 455 samples successfully genotyped, 265 (58.2%), 134 (29.5%), and 29 (6.4%) were classified as *1/*1, *1/*6, and *6/*6, respectively. Patients expressing at least one *6 allele were significantly less likely to achieve a complete response (CR) after FC (odds ratio 0.27; P = .004) but not chlorambucil or fludarabine. Analysis of individual response indicators confirmed that this inferior response resulted from impaired cytoreduction rather than delayed hemopoietic recovery. Multivariate analysis controlling for age, gender, stage, IGHV mutational status, 11q deletion, and TP53 deletion/mutation identified CYP2B6*6 and TP53 mutation/deletion as the only independent determinants of CR attainment after FC. Our study provides the first demonstration that host pharmacogenetics can influence therapeutic response in CLL. This trial is registered as an International Standard Randomised Control Trial, number NCT 58585610 at www.clinicaltrials.gov.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Hidrocarboneto de Aril Hidroxilases/genética , Ciclofosfamida/administração & dosagem , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Vidarabina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/efeitos adversos , Citocromo P-450 CYP2B6 , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética , Prognóstico , Indução de Remissão , Vidarabina/administração & dosagem , Vidarabina/efeitos adversosRESUMO
Metastatic death from uveal melanoma occurs almost exclusively with tumors showing monosomy of chromosome 3. However, approximately 5% of patients with a disomy 3 uveal melanoma develop metastases, and a further 5% of monosomy 3 uveal melanoma patients exhibit disease-free survival for >5 years. In the present study, whole-genome microarrays were used to interrogate four clinically well-defined subgroups of uveal melanoma: i) disomy 3 uveal melanoma with long-term survival; ii) metastasizing monosomy 3 uveal melanoma; iii) metastasizing disomy 3 uveal melanoma; and iv) monosomy 3 uveal melanoma with long-term survival. Cox regression and Kaplan-Meier survival analysis identified that amplification of the CNKSR3 gene (log-rank, P = 0.022) with an associated increase in its protein expression (log-rank, P = 0.011) correlated with longer patient survival. Although little is known about CNKSR3, the correlation of protein expression with increased survival suggests a biological function in uveal melanoma, possibly working to limit metastatic progression of monosomy 3 uveal melanoma cells.
Assuntos
Amplificação de Genes , Estimativa de Kaplan-Meier , Melanoma/genética , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Neoplasias Uveais/genética , Idoso , Variações do Número de Cópias de DNA/genética , Encefalinas/metabolismo , Feminino , Genes Neoplásicos/genética , Humanos , Imuno-Histoquímica , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Precursores de Proteínas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Tempo , Neoplasias Uveais/patologiaRESUMO
OBJECTIVE: To resolve much debated issues surrounding p53 function, expression and mutation in renal cell carcinoma (RCC), we performed the first study to simultaneously determine p53/MDM2 expression, TP53 mutational status (in p53-positive patients) and outcome in RCC. PATIENTS AND METHODS: In total, 90 specimens obtained from patients with RCC, who were treated by radical nephrectomy, were analyzed by immunohistochemistry for p53 and MDM2 on a tissue microarray, and p53 was functionally and genetically analyzed in p53 positive samples. Outcome analysis was by the Kaplan-Meier method and univariate analysis was used to identify variables for subsequent multivariate analysis of correlations between clinical parameters and biomarker expression. RESULTS: Up-regulation of p53 in RCC is strongly linked with MDM2 up-regulation (P < 0.001). Increased coexpression of p53 and MDM2 identifies those patients with a significantly reduced disease-specific survival by univariate (P= 0.036) and Cox multiple regression analysis (P= 0.027; relative risk, 3.20). Functional (i.e. functional analysis of separated alleles in yeast) and genetic analysis of tumours with increased p53 expression shows that most patients (86%) retain wild-type p53. CONCLUSIONS: Coexpression of p53/MDM2 identifies a subset of patients with poor prognosis, despite all of them having organ-confined disease. Up-regulated p53 is typically wild-type and thus provides a mechanistic explanation for the association between p53 and MDM2 expression: up-regulated wild-type p53 likely promotes the observed MDM2 coexpression. The results obtained in the present study suggest that the p53 pathway is altered in a tissue/disease-specific manner and that therapeutic strategies targeting this pathway should be investigated to determine whether the tumour suppressive function of p53 can be rescued in RCC.
Assuntos
Carcinoma de Células Renais/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Nefrectomia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Progressão da Doença , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Estudos Retrospectivos , Proteína Supressora de Tumor p53/biossíntese , Adulto JovemRESUMO
B cell antigen receptor (BCR) signalling competence is critical for the pathogenesis of chronic lymphocytic leukaemia (CLL). Defining key proteins that facilitate these networks aid in the identification of targets for therapeutic exploitation. We previously demonstrated that reduced PKCα function in mouse hematopoietic stem/progenitor cells (HPSCs) resulted in PKCßII upregulation and generation of a poor-prognostic CLL-like disease. Here, prkcb knockdown in HSPCs leads to reduced survival of PKCα-KR-expressing CLL-like cells, concurrent with reduced expression of the leukemic markers CD5 and CD23. SP1 promotes elevated expression of prkcb in PKCα-KR expressing cells enabling leukemogenesis. Global gene analysis revealed an upregulation of genes associated with B cell activation in PKCα-KR expressing cells, coincident with upregulation of PKCßII: supported by activation of key signalling hubs proximal to the BCR and elevated proliferation. Ibrutinib (BTK inhibitor) or enzastaurin (PKCßII inhibitor) treatment of PKCα-KR expressing cells and primary CLL cells showed similar patterns of Akt/mTOR pathway inhibition, supporting the role for PKCßII in maintaining proliferative signals in our CLL mouse model. Ibrutinib or enzastaurin treatment also reduced PKCα-KR-CLL cell migration towards CXCL12. Overall, we demonstrate that PKCß expression facilitates leukemogenesis and identify that BCR-mediated signalling is a key driver of CLL development in the PKCα-KR model.
RESUMO
BACKGROUND: Nrf2 is a key transcriptional regulator of a battery of genes that facilitate phase II/III drug metabolism and defence against oxidative stress. Nrf2 is largely regulated by Keap1, which directs Nrf2 for proteasomal degradation. The Nrf2/Keap1 system is dysregulated in lung, head and neck, and breast cancers and this affects cellular proliferation and response to therapy. Here, we have investigated the integrity of the Nrf2/Keap1 system in pancreatic cancer. RESULTS: Keap1, Nrf2 and the Nrf2 target genes AKR1c1 and GCLC were detected in a panel of five pancreatic cancer cell lines. Mutation analysis of NRF2 exon 2 and KEAP1 exons 2-6 in these cell lines identified no mutations in NRF2 and only synonomous mutations in KEAP1. RNAi depletion of Nrf2 caused a decrease in the proliferation of Suit-2, MiaPaca-2 and FAMPAC cells and enhanced sensitivity to gemcitabine (Suit-2), 5-flurouracil (FAMPAC), cisplatin (Suit-2 and FAMPAC) and gamma radiation (Suit-2). The expression of Nrf2 and Keap1 was also analysed in pancreatic ductal adenocarcinomas (n = 66 and 57, respectively) and matching normal benign epithelium (n = 21 cases). Whilst no significant correlation was seen between the expression levels of Keap1 and Nrf2 in the tumors, interestingly, Nrf2 staining was significantly greater in the cytoplasm of tumors compared to benign ducts (P < 0.001). CONCLUSIONS: Expression of Nrf2 is up-regulated in pancreatic cancer cell lines and ductal adenocarcinomas. This may reflect a greater intrinsic capacity of these cells to respond to stress signals and resist chemotherapeutic interventions. Nrf2 also appears to support proliferation in certain pancreatic adenocarinomas. Therefore, strategies to pharmacologically manipulate the levels and/or activity of Nrf2 may have the potential to reduce pancreatic tumor growth, and increase sensitivity to therapeutics.
Assuntos
Proliferação de Células , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Éxons , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Transdução de Sinais , Regulação para CimaRESUMO
Despite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation.