Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Phys Rev Lett ; 132(8): 080402, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457728

RESUMO

Quantum information scrambling is a unitary process that destroys local correlations and spreads information throughout the system, effectively hiding it in nonlocal degrees of freedom. In principle, unscrambling this information is possible with perfect knowledge of the unitary dynamics [B. Yoshida and A. Kitaev, arXiv:1710.03363.]. However, this Letter demonstrates that even without previous knowledge of the internal dynamics, information can be efficiently decoded from an unknown scrambler by monitoring the outgoing information of a local subsystem. We show that rapidly mixing but not fully chaotic scramblers can be decoded using Clifford decoders. The essential properties of a scrambling unitary can be efficiently recovered, even if the process is exponentially complex. Specifically, we establish that a unitary operator composed of t non-Clifford gates admits a Clifford decoder up to t≤n.

2.
Nature ; 549(7671): 195-202, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905917

RESUMO

Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

3.
Phys Rev Lett ; 128(22): 220502, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714227

RESUMO

The Petz recovery channel plays an important role in quantum information science as an operation that approximately reverses the effect of a quantum channel. The pretty good measurement is a special case of the Petz recovery channel, and it allows for near-optimal state discrimination. A hurdle to the experimental realization of these vaunted theoretical tools is the lack of a systematic and efficient method to implement them. This Letter sets out to rectify this lack: Using the recently developed tools of quantum singular value transformation and oblivious amplitude amplification, we provide a quantum algorithm to implement the Petz recovery channel when given the ability to perform the channel that one wishes to reverse. Moreover, we prove that, in some sense, our quantum algorithm's usage of the channel implementation cannot be improved by more than a quadratic factor. Our quantum algorithm also provides a procedure to perform pretty good measurements when given multiple copies of the states that one is trying to distinguish.

4.
Phys Rev Lett ; 122(10): 100401, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932624

RESUMO

Energy-time uncertainty plays an important role in quantum foundations and technologies, and it was even discussed by the founders of quantum mechanics. However, standard approaches (e.g., Robertson's uncertainty relation) do not apply to energy-time uncertainty because, in general, there is no Hermitian operator associated with time. Following previous approaches, we quantify time uncertainty by how well one can read off the time from a quantum clock. We then use entropy to quantify the information-theoretic distinguishability of the various time states of the clock. Our main result is an entropic energy-time uncertainty relation for general time-independent Hamiltonians, stated for both the discrete-time and continuous-time cases. Our uncertainty relation is strong, in the sense that it allows for a quantum memory to help reduce the uncertainty, and this formulation leads us to reinterpret it as a bound on the relative entropy of asymmetry. Because of the operational relevance of entropy, we anticipate that our uncertainty relation will have information-processing applications.

5.
Phys Rev Lett ; 123(9): 090605, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524464

RESUMO

How a many-body quantum system thermalizes-or fails to do so-under its own interaction is a fundamental yet elusive concept. Here we demonstrate nuclear magnetic resonance observation of the emergence of prethermalization by measuring out-of-time ordered correlations. We exploit Hamiltonian engineering techniques to tune the strength of spin-spin interactions and of a transverse magnetic field in a spin chain system, as well as to invert the Hamiltonian sign to reveal out-of-time ordered correlations. At large fields, we observe an emergent conserved quantity due to prethermalization, which can be revealed by an early saturation of correlations. Our experiment not only demonstrates a new protocol to measure out-of-time ordered correlations, but also provides new insights in the study of quantum thermodynamics.

6.
Phys Rev Lett ; 121(4): 040502, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095952

RESUMO

Generative adversarial networks represent a powerful tool for classical machine learning: a generator tries to create statistics for data that mimics those of a true data set, while a discriminator tries to discriminate between the true and fake data. The learning process for generator and discriminator can be thought of as an adversarial game, and under reasonable assumptions, the game converges to the point where the generator generates the same statistics as the true data and the discriminator is unable to discriminate between the true and the generated data. This Letter introduces the notion of quantum generative adversarial networks, where the data consist either of quantum states or of classical data, and the generator and discriminator are equipped with quantum information processors. We show that the unique fixed point of the quantum adversarial game also occurs when the generator produces the same statistics as the data. Neither the generator nor the discriminator perform quantum tomography; linear programing drives them to the optimal. Since quantum systems are intrinsically probabilistic, the proof of the quantum case is different from-and simpler than-the classical case. We show that, when the data consist of samples of measurements made on high-dimensional spaces, quantum adversarial networks may exhibit an exponential advantage over classical adversarial networks.

7.
Phys Rev Lett ; 120(13): 130502, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694167

RESUMO

The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

8.
Nat Mater ; 15(2): 211-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26461447

RESUMO

One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.


Assuntos
Transferência de Energia , Engenharia Genética , Simulação por Computador , Eletroquímica , Teste de Materiais , Modelos Teóricos , Análise Espectral , Temperatura
9.
Opt Express ; 25(18): 21275-21285, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041427

RESUMO

We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit - high-speed quantum communications using temporal-mode-based quantum data locking - and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration.

10.
Phys Rev Lett ; 118(6): 060502, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234509

RESUMO

Resource theory is a widely applicable framework for analyzing the physical resources required for given tasks, such as computation, communication, and energy extraction. In this Letter, we propose a general scheme for analyzing resource theories based on resource destroying maps, which leave resource-free states unchanged but erase the resource stored in all other states. We introduce a group of general conditions that determine whether a quantum operation exhibits typical resource-free properties in relation to a given resource destroying map. Our theory reveals fundamental connections among basic elements of resource theories, in particular, free states, free operations, and resource measures. In particular, we define a class of simple resource measures that can be calculated without optimization, and that are monotone nonincreasing under operations that commute with the resource destroying map. We apply our theory to the resources of coherence and quantum correlations (e.g., discord), two prominent features of nonclassicality.

11.
Phys Rev Lett ; 118(26): 260501, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707913

RESUMO

We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits.

12.
Phys Rev Lett ; 119(12): 120501, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341649

RESUMO

Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.

13.
Proc Natl Acad Sci U S A ; 111(33): E3367-75, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092336

RESUMO

Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions--prerequisites for efficient energy transport--are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.


Assuntos
Nanotubos , Carbocianinas/química , Corantes/química , Modelos Teóricos
14.
Nano Lett ; 16(11): 6808-6815, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27689389

RESUMO

We report 1.6 ± 1 µm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm2/s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm2/s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

15.
Phys Rev Lett ; 114(17): 170501, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978212

RESUMO

Most methods of optimal control cannot obtain accurate time-optimal protocols. The quantum brachistochrone equation is an exception, and has the potential to provide accurate time-optimal protocols for a wide range of quantum control problems. So far, this potential has not been realized, however, due to the inadequacy of conventional numerical methods to solve it. Here we show that the quantum brachistochrone problem can be recast as that of finding geodesic paths in the space of unitary operators. We expect this brachistochrone-geodesic connection to have broad applications, as it opens up minimal-time control to the tools of geometry. As one such application, we use it to obtain a fast numerical method to solve the brachistochrone problem, and apply this method to two examples demonstrating its power.

16.
Phys Rev Lett ; 113(16): 160502, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361242

RESUMO

Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.

17.
Phys Rev Lett ; 113(13): 130503, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302877

RESUMO

Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

18.
Phys Rev Lett ; 113(14): 140405, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325624

RESUMO

In this Letter we exploit the recently solved conjecture on the bosonic minimum output entropy to show the optimality of Gaussian discord, so that the computation of quantum discord for bipartite Gaussian states can be restricted to local Gaussian measurements. We prove such optimality for a large family of Gaussian states, including all two-mode squeezed thermal states, which are the most typical Gaussian states realized in experiments. Our family also includes other types of Gaussian states and spans their entire set in a suitable limit where they become Choi matrices of Gaussian channels. As a result, we completely characterize the quantum correlations possessed by some of the most important bosonic states in quantum optics and quantum information.

19.
Sci Rep ; 14(1): 18941, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147819

RESUMO

A derivative is a financial asset whose future payoff is a function of underlying assets. Pricing a financial derivative involves setting up a market model, finding a martingale ("fair game") probability measure for the model from the existing asset prices, and using that probability measure to price the derivative. When the number of underlying assets and/or the number of market outcomes in the model is large, pricing can be computationally demanding. In this work, we first formulate the pricing problem in a linear algebra setting, including the realistic setting of incomplete markets where derivatives do not have a unique price. We show that the problem can be solved with a variety of quantum techniques such as quantum linear programming and the quantum linear systems algorithm. While in previous works the martingale measure is assumed to be given, here it is extracted from market variables akin to bootstrapping, a common practice among financial institutions. We discuss the quantum zero-sum game algorithm and the quantum simplex algorithm as viable subroutines. For quantum linear systems solvers, we formalize a new market assumption milder than market completeness, which allows the potential for large speedups. Towards prototype use cases, we conduct numerical experiments motivated by the Black-Scholes-Merton model.

20.
Phys Rev Lett ; 109(5): 050505, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006156

RESUMO

We provide a new quantum algorithm that efficiently determines the quality of a least-squares fit over an exponentially large data set by building upon an algorithm for solving systems of linear equations efficiently [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)]. In many cases, our algorithm can also efficiently find a concise function that approximates the data to be fitted and bound the approximation error. In cases where the input data are pure quantum states, the algorithm can be used to provide an efficient parametric estimation of the quantum state and therefore can be applied as an alternative to full quantum-state tomography given a fault tolerant quantum computer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA