Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
FASEB J ; 34(1): 1107-1121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914708

RESUMO

The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.


Assuntos
Infecções Bacterianas/metabolismo , Caenorhabditis elegans/microbiologia , Nucléolo Celular/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Infecções por Pseudomonas , Interferência de RNA , Infecções Estafilocócicas , Estaurosporina/farmacologia , Ubiquitina Tiolesterase/metabolismo
2.
PLoS Genet ; 11(10): e1005580, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26492166

RESUMO

Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3'UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , MicroRNAs/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 3' não Traduzidas , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Nucléolo Celular/genética , Tamanho Celular , Proteínas Cromossômicas não Histona/metabolismo , Feminino , MicroRNAs/metabolismo , Imagem Óptica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Vulva/crescimento & desenvolvimento , Vulva/metabolismo
3.
Biochem J ; 470(1): 145-54, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26251453

RESUMO

Three waves of apoptosis shape the development of Caenorhabditis elegans. Although the exact roles of the three DNase II genes (nuc-1, crn-6 and crn-7), which are known to mediate degradation of apoptotic DNA, in the embryonic and larval phases of apoptosis have been characterized, the DNase II acting in the third wave of germ cell apoptosis remains undetermined. In the present study, we performed in vitro and in vivo assays on various mutant nematodes to demonstrate that NUC-1 and CRN-7, but not CRN-6, function in germ cell apoptosis. In addition, in situ DNA-break detection and anti-phosphorylated ERK (extracellular-signal-regulated kinase) staining illustrated the sequential and spatially regulated actions of NUC-1 and CRN-7, at the pachytene zone of the gonad and at the loop respectively. In line with the notion that UV-induced DNA fragment accumulation in the gonad activates innate immunity responses, we also found that loss of NUC-1 and CRN-7 lead to up-regulation of antimicrobial genes (abf-2, spp-1, nlp-29, cnc-2, and lys-7). Our observations suggest that an incomplete digestion of DNA fragments resulting from the absence of NUC-1 or CRN-7 in the gonad could induce the ERK signalling, consequently activating antimicrobial gene expression. Taken together, the results of the present study demonstrate for the first time that nuc-1 and crn-7 play a role in degrading apoptotic DNA in distinct sites of the gonad, and act as negative regulators of innate immunity in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Endodesoxirribonucleases/fisiologia , Gônadas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica
4.
J Biol Chem ; 287(13): 10316-10324, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22270364

RESUMO

Integrin signaling and membrane blebbing modulate cell adhesion, spreading, and migration. However, the relationship between integrin signaling and membrane blebbing is unclear. Here, we show that an integrin-ligand interaction induces both membrane blebbing and changes in membrane permeability. Sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are membrane proteins located on the bleb membrane. Inhibition of NHE1 disrupts membrane blebbing and decreases changes in membrane permeability. However, inhibition of NCX1 enhances cell blebbing; cells become swollen because of NHE1 induced intracellular sodium accumulation. Our study found that NHE1 induced sodium influx is a driving force for membrane bleb growth, while sodium efflux (and calcium influx) induced by NCX1 in a reverse mode results in membrane bleb retraction. Together, these findings reveal a novel function for NHE1 and NCX1 in membrane blebbing and permeability, and establish a link between membrane blebbing and integrin signaling.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Estruturas da Membrana Celular/metabolismo , Integrinas/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Animais , Células CHO , Proteínas de Transporte de Cátions/genética , Permeabilidade da Membrana Celular/fisiologia , Estruturas da Membrana Celular/genética , Cricetinae , Cricetulus , Humanos , Integrinas/genética , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologia , Trocador de Sódio e Cálcio/genética , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
5.
J Biomed Sci ; 19: 44, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22520648

RESUMO

BACKGROUND: Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. METHODS: A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity. RESULTS: Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178A mutation exhibited a slight decrease in cholesterol-dependence and a higher-pH threshold for fusion. CONCLUSIONS: Cells expressing amino acid substitutions of conserved protein E1 residues of E1-G91 and E1-H230 lost most of the CHIKV E1-mediated membrane fusion activity. Cells expressing mutations of less-conserved amino acids, E1-V178A and E1-A226V, retained membrane fusion activity to levels similar to those expressing wild type E1, but their fusion properties of pH threshold and cholesterol dependence were slightly altered.


Assuntos
Baculoviridae/genética , Vírus Chikungunya/fisiologia , Expressão Gênica , Glicoproteínas/biossíntese , Proteínas Estruturais Virais/biossíntese , Animais , Técnicas de Cultura de Células , Fusão Celular , Linhagem Celular , Vírus Chikungunya/genética , Genes Reporter , Glicoproteínas/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Fusão de Membrana , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Spodoptera , Proteínas Estruturais Virais/genética
6.
J Biomed Biotechnol ; 2012: 601274, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22577294

RESUMO

Nucleolar size and appearance correlate with ribosome biogenesis and cellular activity. The mechanisms underlying changes in nucleolar appearance and regulation of nucleolar size that occur during differentiation and cell cycle progression are not well understood. Caenorhabditis elegans provides a good model for studying these processes because of its small size and transparent body, well-characterized cell types and lineages, and because its cells display various sizes of nucleoli. This paper details the advantages of using C. elegans to investigate features of the nucleolus during the organism's development by following dynamic changes in fibrillarin (FIB-1) in the cells of early embryos and aged worms. This paper also illustrates the involvement of the ncl-1 gene and other possible candidate genes in nucleolar-size control. Lastly, we summarize the ribosomal proteins involved in life span and innate immunity, and those homologous genes that correspond to human disorders of ribosomopathy.


Assuntos
Caenorhabditis elegans/ultraestrutura , Nucléolo Celular/ultraestrutura , Animais , Embrião não Mamífero
7.
Biomed J ; 43(1): 32-43, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32200954

RESUMO

BACKGROUND: CDGSH iron sulfur domain-containing protein 1 (CISD-1) belongs to the CISD protein family that is evolutionary conserved across different species. In mammals, CISD-1 protein has been implicated in diseases such as cancers and diabetes. As a tractable model organism to study disease-associated proteins, we employed Caenorhabditis elegans in this study with an aim to establish a model for interrogating the functional relevance of CISD-1 in human metabolic conditions. METHODS: We first bioinformatically identified the human Cisd-1 homologue in worms. We then employed N2 wild-type and cisd-1(tm4993) mutant to investigate the consequences of CISD-1 loss-of-function on: 1) the expression pattern of CISD-1, 2) mitochondrial morphology pattern, 3) mitochondrial function and bioenergetics, and 4) the effects of anti-diabetes drugs. RESULTS: We first identified C. elegans W02B12.15 gene as the human Cisd-1 homologous gene, and pinpointed the localization of CISD-1 to the outer membrane of mitochondria. As compared with the N2 wild-type worm, cisd-1(tm4993) mutant exhibited a higher proportion of hyperfused form of mitochondria. This structural abnormality was associated with the generation of higher levels of ROS and mitochondrial superoxide but lower ATP. These physiological changes in mutants did not result in discernable effects on animal motility and lifespan. Moreover, the amount of glucose in N2 wild-type worms treated with troglitazone and pioglitazone, derivatives of TZD, was reduced to a comparable level as in the mutant animals. CONCLUSIONS: By focusing on the Cisd-1 gene, our study established a C. elegans genetic system suitable for modeling human diabetes-related diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Longevidade/genética , Proteínas Mitocondriais/deficiência
8.
Proteins ; 76(4): 808-21, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19280603

RESUMO

Rhodostomin (Rho) is a snake venom protein containing an RGD motif that specifically inhibits the integrin-binding function. Rho produced in Pichia pastoris inhibits platelet aggregation with a K(I) of 78 nM as potent as native Rho. In contrast, its D51E mutant inhibits platelet aggregation with a K(I) of 49 muM. Structural analysis of Rho and its D51E mutant showed that they have the same tertiary fold with three two-stranded antiparallel beta-sheets. There are no structural backbone differences between the RG[D/E] loop which extends outward from the protein core and the RG[D/E] sequence at its apex in a four-residue RG[D/E]M type I turn. Two minor differences between Rho and its D51E mutant were only found from their backbone dynamics and 3D structures. The R(2) value of E51 is 13% higher than that of the D51 residue. A difference in the charge separation of 1.76 A was found between the sidechains of positive (R49) and negative residues (D51 or E51).The docking of Rho into integrin alphavbeta3 showed that the backbone amide and carbonyl groups of the D51 residue of Rho were formed hydrogen bonds with the integrin residues R216 and R214, respectively. In contrast, these hydrogen bonds were absent in the D51E mutant-integrin complex. Our findings suggest that the interactions between both the sidechain and backbone of the D residue of RGD-containing ligands and integrin are important for their binding.


Assuntos
Integrina alfaVbeta3/metabolismo , Peptídeos/genética , Peptídeos/farmacologia , Venenos de Víboras/genética , Venenos de Víboras/farmacologia , Viperidae/metabolismo , Animais , Expressão Gênica , Humanos , Integrina alfaVbeta3/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/genética , Peptídeos/química , Peptídeos/isolamento & purificação , Pichia/genética , Agregação Plaquetária/efeitos dos fármacos , Mutação Puntual , Ligação Proteica , Conformação Proteica , Venenos de Víboras/química , Venenos de Víboras/isolamento & purificação
9.
Virol J ; 6: 31, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19284884

RESUMO

BACKGROUND: Hepatitis delta virus (HDV) is a defected RNA virus and requires its encoded large antigen (LDAg) to interact with helper viral proteins (HBsAgs) during assembly. Recently, a study demonstrated a direct binding of the LDAg C-terminus from genotype I HDV to the clathrin heavy chain (CHC), which suggests that this interaction might facilitate HDV assembly. If LDAg binding to clathrin is essential to HDV life cycle, a clathrin box sequence at the C-terminus of LDAg should be conserved across all HDV. However, the C-terminal sequence of LDAg is variable among 43 HDV isolates. RESULTS: Based on the presence and location of clathrin box at the C-terminus of LDAg from 43 isolates of HDV, we classified them into three groups. Group 1 (13 isolates) and 2 (26 isolates) contain a clathrin box located at amino acids 199-203 and 206-210, respectively, as found in genotype I and genotype II. Group 3 (4 isolates) contains no clathrin box as found in genotype III. CHC binding by three different LDAg (genotype I to III) was then tested by in vivo and in vitro experiments. Transfection of plasmids which encode fusion proteins of EGFP and full-length of LDAg from three genotypes into HuH-7 cells, a human hepatoma cell line, was performed. GFP-pull down assays showed that a full-length of CHC was co-precipitated by EGFP-LDI, -LDII and -LDIII but not by EGFP. Further in vitro studies showed a full-length or fragment (amino acids 1 to 107) of CHC can be pull-down by 13-amino-acid peptides of LDAg from three genotypes of HDV. CONCLUSION: Both in vivo and in vitro studies showed that CHC can bind to various sequences of LDAg from the three major genotypes of HDV. We therefore suggest that the clathrin-LDAg interaction is essential to the HDV life-cycle and that sequences binding to clathrin are evolutionarily selected, but nonetheless show the diversity across different HDV genotypes.


Assuntos
Clatrina/metabolismo , Vírus Delta da Hepatite/fisiologia , Antígenos da Hepatite delta/química , Antígenos da Hepatite delta/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Genótipo , Vírus Delta da Hepatite/genética , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência
10.
J Neurosci Methods ; 328: 108415, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31470028

RESUMO

BACKGROUND: The nematode Caenorhabditis elegans is an emerging invertebrate animal model for investigating neuronal functions in behavioral assays. C. elegans mechanosensation was characterized by the use of a constant mechanical stimulation transmitter followed by quantitative imaging. NEW METHOD: C. elegans reflex and habituation behaviors were characterized by mechanical vibration followed by image analysis. A custom-designed system consists of an aluminum alloy Petri dish holder frame coupled with a mechanical vibration buzzer delivering adjustable pulsed vibration to an agar plate. The basal and evoked movements of C. elegans were recorded by a microscopic digital camera followed by quantitative analysis using microscopic imaging software. RESULTS: Application of the platform in C. elegans was demonstrated with three proof-of-concept experiments: (1) Evaluation of the reflex response stimulated by tapping and mechanical vibration with a mechano-sensation defective mutant. (2) Comparison of the reflex response stimulated by mechanical vibration between wild type and aging mutants. (3) Assessment of the efficacy of the mechanical vibration system on long-term memory for habituation. COMPARISON WITH EXISTING METHODS: Conventional C. elegans mechanosensation techniques depend on stimulation either by manually touching a single animal or tapping the Petri dish followed by scoring via visual observation from the examiner. The mechanical vibration method has greater capacity compared to conventional methods which are labor-intensive, have low throughput and lack quantifiable parameters. CONCLUSIONS: The mechanical vibration system followed by image analysis is a convenient and integrated platform for investigatingC. elegans reflex and habituation in aging and neural behavioral assays.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Habituação Psicofisiológica/fisiologia , Mecanorreceptores/fisiologia , Memória de Longo Prazo/fisiologia , Reflexo/fisiologia , Tato/fisiologia , Animais , Caenorhabditis elegans , Modelos Animais , Vibração
11.
J Mol Med (Berl) ; 97(3): 385-396, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30661088

RESUMO

NADPH is a reducing equivalent that maintains redox homeostasis and supports reductive biosynthesis. Lack of major NADPH-producing enzymes predisposes cells to growth retardation and demise. It was hypothesized that double deficiency of the NADPH-generating enzymes, GSPD-1 (Glucose-6-phosphate 1-dehydrogenase), a functional homolog of human glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, and IDH-1 (isocitrate dehydrogenase-1) affect growth and development in the nematode, Caenorhabditis elegans (C. elegans). The idh-1;gspd-1(RNAi) double-deficient C. elegans model displayed shrinkage of body size, growth retardation, slowed locomotion, and impaired molting. Global metabolomic analysis was employed to address whether or not metabolic pathways were altered by severe NADPH insufficiency by the idh-1;gspd-1(RNAi) double-deficiency. The principal component analysis (PCA) points to a distinct metabolomic profile of idh-1;gspd-1(RNAi) double-deficiency. Further metabolomic analysis revealed that NADPH-dependent and glutamate-dependent amino acid biosynthesis were significantly affected. The reduced pool of amino acids may affect protein synthesis, as indicated by the absence of NAS-37 expression during the molting process. In short, double deficiency of GSPD-1 and IDH-1 causes growth retardation and molting defects, which are, in part, attributed to defective protein synthesis, possibly mediated by altered amino acid biosynthesis and metabolism in C. elegans.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Isocitrato Desidrogenase/deficiência , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase , Isocitrato Desidrogenase/genética , Metaboloma , Fenótipo , Interferência de RNA
12.
J Biomed Sci ; 15(3): 311-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18026871

RESUMO

Up to date, no ultrastructure showing the HBV budding site has ever been reported. In this study, the liver of transgenic mice expressing a high titer of HBV was processed for cryo-ultrathin section electron microscopy. This approach preserves membrane structures very well and thus allowed us to find HBV (Dane particles) and subviral particles (spherical and filamentous form) present separately inside the lumen of the endoplasmic reticulum (ER). Envelopment of single core particle by the ER was found near the Golgi region and mature Dane particles usually resided singularly in a 70-90 nm vesicle at the end of ER or near to mitochondria. Filamentous particles, either in an array or as a single filament inside various sizes of vesicles, were most frequently; these particles were found adjacent to the Golgi region or bile canaliculi. The formation of 22-nm spherical particles seems to occur inside the ER by a transition from preformed filaments to a structure similar to beads on a string. This study is the first report to demonstrate a serial process by which hepatitis B virion assembly takes place in the ER region and distinguishes two separate routes for the morphogenesis of virions and subviral particles.


Assuntos
Vírus da Hepatite B/ultraestrutura , Fígado/virologia , Vírion/ultraestrutura , Animais , Microscopia Crioeletrônica , Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , Camundongos , Camundongos Transgênicos , Mitocôndrias Hepáticas/virologia , Morfogênese
13.
Biomed J ; 41(5): 333-336, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30580798

RESUMO

Nucleolus is viewed as a plurifunctional center in the cell, tightly linked to ribosome biosynthesis. As a non-membranous structure, how the size of nucleolus is determined is a long outstanding question, and the possibility of "direct size scaling to the nucleus" was raised by genetic studies in fission yeast. Here, we used the model organism Caenorhabditis elegans to test this hypothesis in multi-cellular organisms. We depleted ani-2, ima-3, or C27D9.1 by RNAi feeding, which altered embryo sizes to different extents in ncl-1 mutant worms. DIC imaging provided evidence that in size-altering embryo nucleolar size decreases in small cells and increases in large cells. Furthermore, analyses of nucleolar size in four blastomeres (ABa, ABp, EMS, and P2) within the same embryo of ncl-1 mutants consistently demonstrated the correspondence between cell and nucleolar sizes - the small cells (EMS and P2) have smaller nucleoli in comparison to the large cells (ABa).


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Nucléolo Celular/patologia , Proteínas dos Microfilamentos/metabolismo , Animais , Nucléolo Celular/metabolismo , Humanos
14.
World J Virol ; 6(1): 17-25, 2017 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-28239568

RESUMO

AIM: To test whether a simple animal, Caenorhabditis elegans (C. elegans), can be used as an alternative model to study the interaction between hepatitis B virus antigens (HBsAg) and host factors. METHODS: Three plasmids that were able to express the large, middle and small forms of HBsAgs (LHBsAg, MHBsAg, and SHBsAg, respectively) driven by a ubiquitous promoter (fib-1) and three that were able to express SHBsAg driven by different tissue-specific promoters were constructed and microinjected into worms. The brood size, egg-laying rate, and gonad development of transgenic worms were analyzed using microscopy. Levels of mRNA related to endoplasmic reticulum stress, enpl-1, hsp-4, pdi-3 and xbp-1, were determined using reverse transcription polymerase reaction (RT-PCRs) in three lines of transgenic worms and dithiothreitol (DTT)-treated wild-type worms. RESULTS: Severe defects in egg-laying, decreases in brood size, and gonad retardation were observed in transgenic worms expressing SHBsAg whereas moderate defects were observed in transgenic worms expressing LHBsAg and MHBsAg. RT-PCR analysis revealed that enpl-1, hsp-4 and pdi-3 transcripts were significantly elevated in worms expressing LHBsAg and MHBsAg and in wild-type worms pretreated with DTT. By contrast, only pdi-3 was increased in worms expressing SHBsAg. To further determine which tissue expressing SHBsAg could induce gonad retardation, we substituted the fib-1 promoter with three tissue-specific promoters (myo-2 for the pharynx, est-1 for the intestines and mec-7 for the neurons) and generated corresponding transgenic animals. Moderate defective phenotypes were observed in worms expressing SHBsAg in the pharynx and intestines but not in worms expressing SHBsAg in the neurons, suggesting that the secreted SHBsAg may trigger a cross-talk signal between the digestive track and the gonad resulting in defective phenotypes. CONCLUSION: Ectopic expression of three forms of HBsAg that causes recognizable phenotypes in transgenic worms suggests that C. elegans can be used as an alternative model for studying virus-host interactions because the resulting phenotype is easily detected through microscopy.

15.
Bio Protoc ; 7(18): e2554, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541200

RESUMO

Metabolomic is an emerging field of system biology. Lipidomic, a branch of metabolomic, aims to characterize lipophilic metabolites in biological systems. Caenorhabditis elegans (C. elegans) is a genetically tractable and versatile animal model for novel discovery of lipid metabolism. In addition, C. elegans embryo is simple and homogeneous. Here, we demonstrate detailed procedures of C. elegans culture, embryo isolation, lipid extraction and metabolomic data analysis.

16.
Cell Death Dis ; 8(1): e2545, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079896

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.


Assuntos
Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Glucosefosfato Desidrogenase/genética , Fosfolipases A2 Independentes de Cálcio/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Estruturas da Membrana Celular/ultraestrutura , Casca de Ovo/ultraestrutura , Deficiência de Glucosefosfato Desidrogenase/genética , Glicerofosfolipídeos/metabolismo , Homeostase , Oxirredução
17.
Cancer Biol Ther ; 5(3): 310-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16434877

RESUMO

Induction of apoptosis in tumor cells is one of therapeutic strategies of cancer. Previous studies indicate that LMP-1 can act as governor of cell proliferation because overexpression of latent membrane protein 1 (LMP-1) of Epstein-Barr virus (EBV) inhibits cell proliferation. Here we demonstrate that overexpression of the NLMP-1, isolated from an EBV strain prominent in Taiwanese population, also possess the ability to induce apoptosis of cells, and inhibit CT-26 tumor growth in mice. Mapping studies indicate that NLMP-1 transmembrane domain is required for induction of cytotoxicity. Intratumoral delivery of vectors expressing NLMP-1 or its membrane domain via electroporation induces tumor tissue damage, suppresses tumor growth in mice, and prolongs the survival of treated animals. In addition, the membrane domain of NLMP-1 alone induces effects similar to those induced by cotreatment with NLMP-1 and IL-12. Tumor-free mice at 120 days after the initial treatments were further challenged with CT-26 tumor cells. No tumor growth was observed. Thus, NLMP-1, and more specifically the transmembrane domain of NLMP-1, may be promising new therapeutic agents for control of tumor growth.


Assuntos
Apoptose , Neoplasias Experimentais/terapia , Proteínas da Matriz Viral/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Citocinas/uso terapêutico , Eletroporação , Feminino , Terapia Genética , Proteínas de Fluorescência Verde , Interleucina-12/genética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Dados de Sequência Molecular , Transplante de Neoplasias , Neoplasias Experimentais/patologia , Estrutura Terciária de Proteína , Transfecção , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
18.
Cell Res ; 16(6): 530-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16775624

RESUMO

The nucleolus is the most prominent compartment in the nucleus and known as the site for ribosome biogenesis in eucaryotes. In contrast, there is no such equivalent structure for ribosome synthesis in procaryotes. This raises two concerns that how does the nucleolus evolve and that whether the nucleolus remains playing a single role in ribosome biogenesis along the evolution. Increasing data support new nucleolus functions, including signal recognition particle assembly, small RNA modification, telomerase maturation, cell-cycle and aging control, and cell stress sensor. Multiple functions of the nucleolus possibly result from the plurifunctionality of nucleolar proteins, such as nucleolin and Nopp140. Proteomic analyses of human and Arabidopsis nucleolus lead a remarkable progress in understanding the evolution and new functions of nucleoli. In this review, we present a brief history of nucleolus research and new concepts and unresolved questions. Also, we introduce hepatitis D virus for studying the communication between the nucleolus and other subnuclear compartments, and Caenorhabditis elegans for the role of nucleolus in the development and the epistatic control of nucleologenesis.


Assuntos
Nucléolo Celular/fisiologia , Animais , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/ultraestrutura , Ciclo Celular/fisiologia , Nucléolo Celular/ultraestrutura , Senescência Celular/fisiologia , Epistasia Genética , Evolução Molecular , Vírus Delta da Hepatite/metabolismo , Vírus Delta da Hepatite/ultraestrutura , Humanos , RNA Nucleolar Pequeno/fisiologia , Partícula de Reconhecimento de Sinal/fisiologia , Telomerase/fisiologia
19.
Sci Rep ; 6: 32021, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535493

RESUMO

Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm(-1)) and lipid (~2845 cm(-1)) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Ácidos Graxos Insaturados/metabolismo , Lipídeos/análise , Microscopia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/química , Lipídeos/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Mutagênese , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Imagem Óptica , Análise Espectral Raman , Saco Vitelino/metabolismo
20.
Nucleus ; 7(2): 112-20, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27003693

RESUMO

Exploiting a C. elegans mutant (ncl-1) exhibiting nucleolar abnormalities, we recently identified the let-7/ncl-1/fib-1 genetic cascade underlying proper rRNA abundance and nucleolar size. These 3 factors, let-7 (a miRNA), NCL-1 (a member of the TRIM-NHL family), and fibrillarin (a nucleolar methyltransferase), are evolutionarily conserved across metazoans. In this article, we provide several lines of bioinformatic evidence showing that human and Drosophila homologues of C. elegans NCL-1, TRIM-71 and Brat, respectively, likely act as translational suppressors of fibrillarin. Moreover, since their 3'-UTRs contain putative target sites, they may also be under the control of the let-7 miRNA. We hypothesize that let-7, TRIM and fibrillarin contribute activities in concert, and constitute a conserved network controlling nucleolar size in eukaryotes. We provide an in-depth literature review of various molecular pathways, including the let-7/ncl-1/fib-1 genetic cascade, implicated in the regulation of nucleolar size.


Assuntos
Nucléolo Celular , Evolução Molecular , Tamanho das Organelas/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA