Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Pharmacol Exp Ther ; 357(3): 476-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27029584

RESUMO

Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis.


Assuntos
Acetaminofen/metabolismo , Acetaminofen/toxicidade , Benzoquinonas/metabolismo , Citoproteção/efeitos dos fármacos , Iminas/metabolismo , Fígado/efeitos dos fármacos , Floretina/farmacologia , Animais , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Floretina/metabolismo
2.
Chem Res Toxicol ; 29(12): 2096-2107, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989140

RESUMO

Evidence from laboratory studies and clinical trials suggests that plant-derived polyphenolic compounds such as curcumin, resveratrol, or phloretin might be useful in the treatment of certain diseases (e.g., Alzheimer's disease) and acute tissue injury states (e.g., spinal cord trauma). However, despite this potential, the corresponding chemical instability, toxic potential, and low bioavailability of these compounds could limit their ultimate clinical relevance. We have shown that pharmacophores of curcumin (e.g., 2-acetylcyclopentanone) and phloretin (e.g., 2',4',6'-trihydroxyacetophenone; THA) can provide cytoprotection in cell culture and animal models of oxidative stress injury. These pharmacophores are 1,3-dicarbonyl and polyphenol derivatives, the enol groups of which can ionize in biological solutions to form an enolate. This carbanionic moiety can chelate metal ions and, as a nucleophile, can scavenge toxic electrophiles (e.g., acrolein, 4-hydroxy-2-nonenal, and N-acetyl-p-benzoquinone imine) involved in many pathogenic conditions. Aromatic derivatives such as THA can also trap free oxygen and nitrogen radicals and thereby provide another layer of cytoprotection. The multifunctional character of these enolate-forming compounds suggests an ability to block pathogenic processes (e.g., oxidative stress) at several steps. The purpose of this review is to discuss research supporting our theory that enolate formation is a significant cytoprotective property that represents a platform for development of pharmacotherapeutic approaches to a variety of toxic and pathogenic conditions. Our discussion will focus on mechanism and structure-activity studies that define enolate chemistry and their corresponding relationships to cytoprotection.


Assuntos
Citoproteção , Animais , Células Cultivadas , Hepatócitos/citologia , Estresse Oxidativo , Polifenóis/química , Relação Estrutura-Atividade
3.
J Pharmacol Exp Ther ; 353(1): 150-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659651

RESUMO

We have previously shown that 2-acetylcyclopentanone (2-ACP), an enolate-forming 1,3-dicarbonyl compound, provides protection in cell culture and animal models of oxidative stress. The pathophysiology of ischemia-reperfusion injury (IRI) involves oxidative stress, and, therefore, we determined the ability of 2-ACP to prevent this injury in a rat liver model. IRI was induced by clamping the portal vasculature for 45 minutes (ischemia phase), followed by recirculation for 180 minutes (reperfusion phase). This sequence was associated with substantial derangement of plasma liver enzyme activities, histopathological indices, and markers of oxidative stress. The 2-ACP (0.80-2.40 mmol/kg), administered by intraperitoneal injection 10 minutes prior to reperfusion, provided dose-dependent cytoprotection, as indicated by normalization of the IRI-altered liver histologic and biochemical parameters. The 2-ACP (2.40 mmol/kg) was also hepatoprotective when injected before clamping the circulation (ischemia phase). In contrast, an equimolar dose of N-acetylcysteine (2.40 mmol/kg) was not hepatoprotective when administered prior to reperfusion. Our studies to date suggest that during reperfusion the enolate nucleophile of 2-ACP limits the consequences of mitochondrial-based oxidative stress through scavenging unsaturated aldehyde electrophiles (e.g., acrolein) and chelation of metal ions that catalyze the free radical-generating Fenton reaction. The ability of 2-ACP to reduce IRI when injected prior to ischemia most likely reflects the short duration of this experimental phase (45 minutes) and favorable pharmacokinetics that maintain effective 2-ACP liver concentrations during subsequent reperfusion. These results provide evidence that 2-ACP or an analog might be useful in treating IRI and other conditions that have oxidative stress as a common molecular etiology.


Assuntos
Cetonas/farmacologia , Fígado/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Aldeídos/química , Aldeídos/metabolismo , Animais , Citoproteção , Temperatura Alta , Cetonas/uso terapêutico , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo , Teoria Quântica , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Succinato Desidrogenase/metabolismo
4.
Chem Res Toxicol ; 27(7): 1081-91, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24911545

RESUMO

Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,ß-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,ß-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions. Finally, we propose that environmentally derived aldehydes can accelerate diseases by interacting with endogenous aldehydes generated during oxidative stress. This review provides a basis for understanding aldehyde mechanisms and environmental toxicity through the context of electronic structure, electrophilicity, and nucleophile target selectivity.


Assuntos
Aldeídos/química , Aldeídos/toxicidade , Animais , Humanos
5.
J Pharmacol Exp Ther ; 346(2): 259-69, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23759509

RESUMO

Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with substantial changes in plasma liver enzyme activities, histopathological indices, and markers of hepatocyte oxidative stress. 2-ACP administered intraperitoneally 20 minutes before APAP completely prevented lethality over a 7-day observation period. This effect was dose-dependent (0.80-2.40 mmol/kg) and was correlated with normalization of measured parameters. Nearly complete protection was afforded when 2-ACP was administered 20 minutes post-APAP, but not 60 minutes after intoxication. Although intraperitoneal administration of N-acetylcysteine (NAC) was not effective over a broad dose range (2.40-7.20 mmol/kg), temporal studies indicated that intraperitoneal NAC was hepatoprotective when injected 60 minutes after APAP intoxication. Because of a loss of function in stomach acid, oral administration of 2-ACP was associated with modest APAP protection. In contrast, NAC administered orally provided dose-dependent (0.80-2.40 mmol/kg) protection against APAP hepatotoxicity. In chemico studies and quantum mechanical calculations indicated that 2-ACP acted as a surrogate nucleophilic target for the reactive electrophilic APAP metabolite N-acetyl-p-benzoquinone imine. Our findings suggest that 2-ACP or a derivative might be useful in treating acquired toxicities associated with electrophilic drugs and metabolites or environmental toxicants.


Assuntos
Acetaminofen/intoxicação , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cetonas/farmacologia , Acetaminofen/administração & dosagem , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Administração Oral , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Injeções Intraperitoneais , Cetonas/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Teoria Quântica
6.
Chem Res Toxicol ; 25(2): 239-51, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22053936

RESUMO

Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic electrophiles. Clearly, the difficult task of delineating molecular sites and mechanisms of toxicant action can be facilitated by the application of this quantitative approach.


Assuntos
Ácidos/toxicidade , Álcalis/toxicidade , Xenobióticos/toxicidade , Animais , Humanos , Concentração de Íons de Hidrogênio , Modelos Químicos , Teoria Quântica
7.
Neurotoxicology ; 90: 48-61, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227730

RESUMO

Neurotoxicants may be widespread in the environment and can produce serious health impacts in the human population. Screening programs that use in vitro methods have generated data for thousands of chemicals. However, these methods often do not evaluate repeated or prolonged exposures, which are required for many neurotoxic outcomes. Additionally, the data produced by such screening methods may not include mechanisms which play critical biological roles necessary for in vivo neurotoxicity. The Hard and Soft Acids and Bases (HSAB) in silico model focuses on chemical structure and electrophilic properties which are important to the formation of protein adducts. A group of structurally diverse chemicals have been evaluated with an in silico screening approach incorporating HSAB parameters. However, the predictions from the expanded chemical space have not been evaluated using in vivo methods. Three chemicals predicted to be cumulative toxicants were selected for in vivo neurotoxicological testing. Adult male Long-Evans rats were treated orally with citronellal (CIT), 3,4-dichloro-1-butene (DCB), or benzyl bromoacetate (BBA) for 8 weeks. Behavioral observations were recorded weekly to assess motor function. Peripheral neurophysiological measurements were derived from nerve excitability (NE) tests which involved compound muscle action potentials (CMAPs) in the tail and foot, and mixed nerve action potentials (MNAPs) in the tail. Compound nerve action potentials (CNAPs) and nerve conduction velocity (NCV) in the tail were also quantified. Peripheral inputs into the central nervous system were examined using somatosensory evoked potentials recorded from the cortex (SEPCTX) and cerebellum (SEPCEREB). CIT or BBA did not result in significant alterations to peripheral nerve or somatosensory function. DCB reduced grip-strength and altered peripheral nerve function. The MNAPs required less current to reach 50% amplitude and had a lower calculated rheobase, suggesting increased excitability. Increased CNAP amplitudes and greater NCV were also observed. Novel changes were found in the SEPCTX with an abnormal peak forming in the early portion of the waveforms of treated rats, and decreased latencies and increased amplitudes were observed in SEPCEREB recordings. These data contribute to testing an expanded chemical space from an in silico HSAB model for predicting cumulative neurotoxicity and may assist with prioritizing chemicals to protect human health.


Assuntos
Síndromes Neurotóxicas , Nervos Periféricos , Acetatos , Potenciais de Ação , Monoterpenos Acíclicos , Aldeídos , Animais , Hidrocarbonetos Clorados , Masculino , Condução Nervosa , Síndromes Neurotóxicas/etiologia , Ratos , Ratos Long-Evans
8.
J Neurochem ; 116(1): 132-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21054388

RESUMO

Curcumin, phloretin and structurally related phytopolyphenols have well-described neuroprotective properties that appear to be at least partially mediated by 1,3-dicarbonyl enol substructures that form nucleophilic enolates. Based on their structural similarities, we tested the hypothesis that enolates of simple 1,3-dicarbonyl compounds such as acetylacetone might also possess neuroprotective actions. Our results show that the ß-diketones, particularly 2-acetylcyclopentanone, protected rat striatal synaptosomes and a neuronal cell line from thiol loss and toxicity induced by acrolein, an electrophilic α,ß-unsaturated aldehyde. The 1,3-dicarbonyl compounds also provided substantial cytoprotection against toxicity induced by hydrogen peroxide in a cellular model of oxidative stress. Initial chemical characterization in cell-free systems indicated that the 1,3-dicarbonyl compounds acted as surrogate nucleophilic targets that slowed the rate of sulfhydryl loss caused by acrolein. Although the selected 1,3-dicarbonyl congeners did not scavenge free radicals, metal ion chelation was a significant property of both acetylacetone and 2-acetylcyclopentanone. Our data suggest that the 1,3-dicarbonyl enols represent a new class of neuroprotectants that scavenge electrophilic metal ions and unsaturated aldehydes through their nucleophilic enolate forms. As such, these enols might be rational candidates for treatment of acute or chronic neurodegenerative conditions that have oxidative stress as a common molecular etiology.


Assuntos
Curcumina/análogos & derivados , Cetonas/química , Fármacos Neuroprotetores/química , Animais , Linhagem Celular Tumoral , Curcumina/classificação , Curcumina/farmacologia , Cetonas/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/classificação , Fármacos Neuroprotetores/farmacologia , Polifenóis/química , Polifenóis/classificação , Polifenóis/farmacologia , Ratos , Ratos Sprague-Dawley
9.
Chem Res Toxicol ; 24(12): 2302-11, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22084934

RESUMO

α,ß-Unsaturated carbonyls make up an important class of chemicals involved in environmental toxicity and disease processes. Whereas adduction of cysteine residues on proteins is a well-documented reaction of these chemicals, such a generic effect cannot explain the molecular mechanism of cytotoxicity. Instead, more detailed information is needed regarding the possible specificity and kinetics of cysteine targeting and the quantitative relationship between adduct burden and protein dysfunction. To address these data gaps, we incubated purified human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with acrylamide (ACR), acrolein, or methylvinyl ketone (MVK). Results show that these α,ß-unsaturated carbonyl toxicants inhibited GAPDH activity in a concentration- and time-dependent manner. The rank order of enzyme inhibition (K(I)) (i.e., ACR ≪ MVK < acrolein) was related to the calculated electrophilic reactivity of each compound and to the corresponding kinetics of cysteine adduct formation. Tandem mass spectrometry revealed that adduct formation was selective at lower concentrations; i.e., ACR preferentially formed adducts with Cys152 (residues 146-162). At higher concentrations, ACR also formed adducts with Cys156 and Cys247 (residues 235-248). Adduct formation at Cys152 was correlated to enzyme inhibition, which is consistent with the regulatory role of this residue in enzyme function and its location within the GAPDH active site. Further analyses indicated that Cys152 was present in a pK(a)-lowering microenvironment (pK(a) = 6.03), and at physiological pH, the corresponding sulfhydryl group exists in the highly reactive nucleophilic thiolate state. These data suggest a general cytotoxic mechanism in which electrophilic α,ß-unsaturated carbonyls selectively form adducts with reactive nucleophilic cysteine residues specifically associated with the active sites of proteins. These specialized cysteine residues are toxicologically relevant molecular targets, because chemical derivatization causes loss of protein function.


Assuntos
Aldeídos/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Cetonas/química , Acroleína/química , Acrilamida/química , Aldeídos/farmacologia , Butanonas/química , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Cetonas/farmacologia , Cinética , Espectrometria de Massas em Tandem
10.
Neurotoxicology ; 79: 95-103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380191

RESUMO

Xenobiotic electrophiles can form covalent adducts that may impair protein function, damage DNA, and may lead a range of adverse effects. Cumulative neurotoxicity is one adverse effect that has been linked to covalent protein binding as a Molecular Initiating Event (MIE). This paper describes a mechanistic in silico chemical screening approach for neurotoxicity based on Hard and Soft Acids and Bases (HSAB) theory. We evaluated the applicability of HSAB-based electrophilicity screening protocol for neurotoxicity on 19 positive and 19 negative reference chemicals. These reference chemicals were identified from the literature, using available information on mechanisms of neurotoxicity whenever possible. In silico screening was based on structural alerts for protein binding motifs and electrophilicity index in the range of known neurotoxicants. The approach demonstrated both a high positive prediction rate (82-90 %) and specificity (90 %). The overall sensitivity was relatively lower (47 %). However, when predicting the toxicity of chemicals known or suspected of acting via non-specific adduct formation mechanism, the HSAB approach identified 7/8 (sensitivity 88 %) of positive control chemicals correctly. Consequently, the HSAB-based screening is a promising approach of identifying possible neurotoxins with adduct formation molecular initiating events. While the approach must be expanded over time to capture a wider range of MIEs involved in neurotoxicity, the mechanistic nature of the screen allows users to flag chemicals for possible adduct formation MIEs. Thus, the HSAB based toxicity screening is a promising strategy for toxicity assessment and chemical prioritization in neurotoxicology and other health endpoints that involve adduct formation.


Assuntos
Ácidos/toxicidade , Álcalis/toxicidade , Poluentes Ambientais/toxicidade , Modelos Químicos , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Ácidos/química , Álcalis/química , Animais , Poluentes Ambientais/química , Humanos , Concentração de Íons de Hidrogênio , Neurotoxinas/química , Medição de Risco , Fatores de Risco
11.
Chem Biol Interact ; 317: 108961, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978392

RESUMO

Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients. Although considered to be life-saving as a cancer treatment, Pt-based drugs frequently result in dose-limiting toxicities such as chemotherapy-induced peripheral neuropathies (CIPN). Specifically, irreversible damage to outer hair cells and injury of sensory neurons are linked to profound sensorineural hearing loss (ototoxicity), which complicates tumor management and can lead to a poor clinical prognosis. Given the severity of CIPN, substantial effort has been devoted to the development of neuroprotective compounds, regardless clinical results have been underwhelming. It is noteworthy that Pt is a highly reactive electrophile (electron deficient) that causes toxicity by forming adducts with nucleophilic (electron rich) targets on macromolecules. In this regard, we have discovered a series of carbon-based enol nucleophiles; e.g., N-(4-acetyl-3,5-dihydroxyphenyl)-2-oxocytclopentane-1-carboxamide (Gavinol), that can prevent neurotoxicity by scavenging the platinum ion. The chemistry of enol compounds is well understood and mechanistic research has demonstrated the role of this chemistry in cytoprotection. Our cell-derived data were corroborated by calculations of hard and soft, acids and bases (HSAB) parameters that describe the electronic character of interacting electrophiles and nucleophiles. Together, these observations indicate that the respective mechanisms of Pt neurotoxicity and antitumor activity are separable and can therefore be affected independently.


Assuntos
Antineoplásicos/efeitos adversos , Síndromes Neurotóxicas , Compostos Organoplatínicos/toxicidade , Platina/toxicidade , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos
12.
Toxicol In Vitro ; 69: 104989, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32882341

RESUMO

The Hard-Soft Acid and Base hypothesis can be used to predict the potential bio-reactivity (electrophilicity) of a chemical with intracellular proteins, resulting in neurotoxicity. Twelve chemicals predicted to be neurotoxic were evaluated in vitro in rat dorsal root ganglia (DRG) for effects on cytotoxicity (%LDH), neuronal structure (total neurite length/neuron, NLPN), and neurophysiology (mean firing rate, MFR). DRGs were treated acutely on days in vitro (DIV) 7 (1-100 µM) with test chemical; %LDH and NLPN were measured after 48 h. 4-cyclohexylhexanone (4-C) increased %LDH release at 50 (29%) and 100 µM (56%), citronellal (Cit) and 1-bromopropane increased %LDH at 100 µM (22% and 26%). 4-C, Cit, 2,5 Hexanedione (2,5Hex), phenylacetylaldehyde (PAA) and 2-ethylhexanal decreased mean NLPN at 48 h; 50 and 100 µM for 4-C (28% and 60%), 100 µM Cit (52%), 100 µM 2,5- Hex (37%) 100 µM PAA (41%) and 100 µM for 2-ethylhexanal (23%). Separate DRG cultures were treated on DIV 14 and changes in MFR measured. Four compounds decreased MFR at 50 or 100 µM: Acrylamide (-83%), 3,4-dichloro-1-butene (-93%), 4-C (-89%) and hexane (-79%, 50 µM). Changes in MFR and NLPN occurred in absence of cytotoxicity. While the current study showed little cytotoxicity, it gave insight to initial changes in MFR. Results provide insight for future chronic exposure experiments to evaluate neurotoxicity.


Assuntos
Gânglios Espinais/fisiologia , Neuritos/fisiologia , Síndromes Neurotóxicas , Testes de Toxicidade/métodos , Animais , Sobrevivência Celular , Simulação por Computador , Embrião de Mamíferos , Feminino , Gravidez , Ratos Long-Evans
13.
Chem Res Toxicol ; 22(9): 1499-508, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19610654

RESUMO

Acrolein and 4-hydroxy-2-nonenal (HNE) are byproducts of lipid peroxidation and are thought to play central roles in various traumatic injuries and disease states that involve cellular oxidative stress, for example, spinal cord trauma, diabetes, and Alzheimer's disease. In this review, we will discuss the chemical attributes of acrolein and HNE that determine their toxicities. Specifically, these aldehydes are classified as type 2 alkenes and are characterized by an alpha,beta-unsaturated carbonyl structure. This structure is a conjugated system that contains mobile pi-electrons. The carbonyl oxygen atom is electronegative and can promote the withdrawal of mobile electron density from the beta-carbon atom causing regional electron deficiency. On the basis of this type of electron polarizability, both acrolein and HNE are considered to be soft electrophiles that preferentially form 1,4-Michael type adducts with soft nucleophiles. Proteomic, quantum mechanical, and kinetic data will be presented, indicating that cysteine sulfhydryl groups are the primary soft nucleophilic targets of acrolein and HNE. This is in contrast to nitrogen groups on harder biological nucleophiles such as lysine or histidine residues. The toxicological outcome of adduct formation is not only dependent upon residue selectivity but also the importance of the targeted amino acid in protein function or structure. In attempting to discern the toxicological significance of a given adduct, we will consider the normal roles of cysteine, lysine, and histidine residues in proteins and the relative merits of corresponding adducts in the manifestations of diseases or toxic states. Understanding the molecular actions of acrolein and HNE could provide insight into many pathogenic conditions that involve initial cellular oxidative stress and could, thereby, offer new efficacious avenues of pharmacological defense.


Assuntos
Acroleína/toxicidade , Aldeídos/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , Acroleína/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Cinética , Estresse Oxidativo , Proteômica , Teoria Quântica
14.
J Toxicol Environ Health A ; 72(14): 861-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19557614

RESUMO

2,5-Hexanedione (HD) is the metabolite implicated in n-hexane neurotoxicity. This gamma-diketone reacts with protein lysine amines to form 2,5-dimethylpyrrole adducts. Pyrrole adduction of neurofilaments (NF) and/or other axonal proteins was proposed as a critical step in the neuropathy. While pyrrole adduction is widely accepted as necessary, subsequent pyrrole oxidation, which may result in protein cross-linking, was alternatively postulated as the critical mechanistic step. Previous studies have indicated that 3-acetyl-2,5-HD (AcHD), an analogue that forms pyrroles that do not oxidize, was not neurotoxic in rats. However, relative levels of pyrrole adduction of NF or other axonal proteins were not reported. In the present study, groups of 6 male Wistar rats were given saline, [1,6-(14)C]-HD (3 mmol/kg/d), or [5-(14)C]-AcHD (0.1 mmol/kg/d), i.p. for 21 d. HD- and AcHD-treated rats lost 10% and gained 14% body weight, respectively, compared to a 22% gain for control rats. At termination, HD- and AcHD-treated rats exhibited mean scores of 3.5 and 1.4, respectively, for hindlimb weakness (0-5 scale). Incorporation of radiolabel from HD was 27.8 +/- 3.9, 13.9 +/- 2.6, and 7.8 +/- 0.6 nmol/mg in plasma protein, purified globin, and axonal cytoskeletal proteins, respectively, compared to 0.6 +/- 0.1, 1.6 +/- 0.5, and 1.0 +/- 0.1 for AcHD. Binding of HD to the NF-L, -M, and -H subunit proteins from treated animals was 4-, 24-, and 13-fold higher, respectively, that that of AcHD, indicating differing stoichiometry and patterns of NF adduction for the two diketones. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of globin and NF proteins did not demonstrate protein cross-linking for either diketone at the dose levels and time period examined. These results indicate that that the lack of neurotoxicity previously reported for AcHD may reflect differences in adduct levels at critical axonal target sites rather than an inability to form cross-linking adducts. Based on these data, further studies are required to fully assess the neurotoxic potency of AcHD and other non-cross-linking analogues as compared to HD.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Hexanonas/metabolismo , Animais , Axônios/metabolismo , Ergosterol/análogos & derivados , Hexanos/química , Hexanos/metabolismo , Hexanos/toxicidade , Masculino , Estrutura Molecular , Síndromes Neurotóxicas/metabolismo , Ratos , Ratos Wistar , Medula Espinal/citologia
15.
Toxicology ; 418: 62-69, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826385

RESUMO

Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Modelos Biológicos , Modelos Moleculares , Xenobióticos/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Poluentes Ambientais/química , Dureza , Humanos , Conformação Molecular , Medição de Risco , Relação Estrutura-Atividade , Xenobióticos/química
16.
Neurotoxicology ; 29(5): 871-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18582500

RESUMO

Synaptic dysfunction appears to be an early pathogenic event in Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. Although the molecular mechanism of this synaptotoxicity is not known, evidence suggests that these diseases are characterized by a common pathophysiological cascade involving oxidative stress, lipid peroxidation and the subsequent liberation of alpha,beta-unsaturated carbonyl derivatives such as acrolein and 4-hydroxy-2-nonenal (HNE). A diverse body of in vivo and in vitro data have shown that these soft electrophilic chemicals can cause nerve terminal damage by forming Michael-type adducts with nucleophilic sulfhydryl groups on presynaptic proteins. Therefore, the endogenous generation of acrolein and HNE in oxidatively stressed neurons of certain brain regions might be mechanistically related to the synaptotoxicity associated with neurodegenerative conditions. In addition, acrolein and HNE are members of a large class of structurally related chemicals known as the type-2 alkenes. Chemicals in this class (e.g., acrylamide, methylvinyl ketone, and methyl acrylate) are pervasive pollutants in human environments and new research has shown that these alpha,beta-unsaturated carbonyl derivatives are also toxic to nerve terminals. In this review, we provide evidence that the regional synaptotoxicity, which develops during the early stages of many neurodegenerative diseases, is mediated by endogenous generation of acrolein and HNE. Based on a presumed common nerve terminal site of action, we propose that the onset and progression of this neuropathogenic process is accelerated by environmental exposure to other type-2 alkenes.


Assuntos
Alcenos/toxicidade , Doenças Neurodegenerativas/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Alcenos/química , Alcenos/classificação , Animais , Humanos , Modelos Biológicos
17.
Chem Biol Interact ; 296: 117-123, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30287234

RESUMO

Phloretin (Phl) is a dihydrochalcone flavonoid with significant cytoprotective properties; e.g., free radical trapping, electrophile scavenging. Based on this, it has been suggested that Phl might be useful in the treatment of pathogenic processes and prevention of drug toxicities. Therefore, we determined the ability of Phl to provide route- and dose-dependent hepatoprotection in a mouse model of acetaminophen (APAP) overdose. Intraperitoneal (i.p.) administration of Phl produced a bimodal effect; i.e., the highest dose (2.40 mmol/kg) did not prevent APAP-induced lethality, whereas lower doses (0.2-0.4 mmol/kg) afforded modest hepatoprotection. When given alone, the highest i.p. Phl dose was lethal within 24 h, whereas the lower doses were not toxic. Oral Phl (0.40-2.40 mmol/kg) did not prevent APAP-induced hepatotoxicity. The highest oral dose given alone (2.4 mmol/kg) produced 64% lethality, whereas lower doses were not lethal. This toxicity profile was reflected in a study using APAP-exposed isolated mouse hepatocytes, which showed that the Phl pharmacophores, 1,3,5-trihydroxyacetophenone (PG) and 2',4',6'-trihydroxyacetophenone (THA) where protective. Corroborative cell free studies showed that polyphenol protectants prevented glutathione loss mediated by the APAP metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Thus, in spite of possessing cytoprotective attributes, Phl was generally toxic in our APAP models. These and earlier findings suggest that Phl is not a candidate for drug design. In contrast, we have found that the enol-forming pharmacophores, THA and PG, are potential platforms for pharmacotherapeutic development.


Assuntos
Citoproteção/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Floretina/farmacologia , Substâncias Protetoras/farmacologia , Animais , Benzoquinonas/farmacologia , Relação Dose-Resposta a Droga , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Hepatócitos/patologia , Iminas/farmacologia , Injeções Intraperitoneais , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Floretina/administração & dosagem , Floretina/química , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Relação Estrutura-Atividade
18.
Toxicol Sci ; 100(1): 156-67, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17698512

RESUMO

We have hypothesized that acrylamide (ACR) intoxication causes cumulative nerve terminal damage by forming adducts with nucleophilic cysteine sulfhydryl groups on critical presynaptic proteins. To determine the cumulative effects of ACR on the cysteine-containing proteome of nerve terminal, we employed cleavable isotope-coded affinity tagging (ICAT) and liquid chromatography-tandem mass spectrometry. ICAT analysis uses a sulfhydryl-specific tag to identify and quantitate cysteine-containing proteins. Synaptosomes were prepared from striatum of ACR-intoxicated rats (21 mg/kg/day x 7, 14, or 21 days) and their age-matched controls. The synaptosomal proteins of each experimental group were labeled with either light (12C9--control) or heavy (13C9--ACR) ICAT reagent. Results show that ACR intoxication caused a progressive reduction in the ICAT labeling of many nerve terminal proteins. A label-free mass spectrometric approach (multidimensional protein identification) was used to show that the observed reductions in ICAT incorporation were not due to general changes in protein abundance and that ACR formed adducts with cysteine residues on peptides which also exhibited reduced ICAT incorporation. The decrease in labeling was temporally correlated to the development of neurological toxicity and confirmed previous findings that cysteine adducts of ACR accumulate as a function of exposure. The accumulation of adduct is consistent with the cumulative neurotoxicity induced by ACR and suggests that cysteine adduct formation is a necessary neuropathogenic step. Furthermore, our analyses identified specific proteins (e.g., v-ATPase, dopamine transporter, N-ethylmaleimide-sensitive factor) that were progressively and significantly adducted by ACR and might, therefore, be neurotoxicologically relevant targets.


Assuntos
Acrilamida/toxicidade , Gânglios da Base/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Síndromes Neurotóxicas/etiologia , Proteômica , Sinaptossomos/efeitos dos fármacos , Animais , Gânglios da Base/metabolismo , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Cisteína/química , Marcha/efeitos dos fármacos , Marcação por Isótopo , Masculino , Proteínas do Tecido Nervoso/química , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo
19.
Toxicol Sci ; 98(2): 561-70, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17519395

RESUMO

Conjugated Type-2 alkenes, such as acrylamide (ACR), are soft electrophiles that produce neurotoxicity by forming adducts with soft nucleophilic sulfhydryl groups on proteins. Soft-soft interactions are governed by frontier molecular orbital characteristics and can be defined by quantum mechanical parameters such as softness (sigma) and chemical potential (mu). The neurotoxic potency of ACR is likely related to the rate of adduct formation, which is reflected in values of sigma. Correspondingly, differences in mu, the ability of a nucleophile to transfer electrons to an electrophile, could determine protein targets of these chemicals. Here, sigma and mu were calculated for a series of structurally similar Type-2 alkenes and their potential sulfhydryl targets. Results show that N-ethylmaleimide, acrolein and methylvinyl ketone were softer electrophiles than methyl acrylate or ACR. Softness (sigma) was closely correlated to corresponding second-order rate constants (k(2)) for electrophile reactions with sulfhydryl groups on N-acetyl-L-cysteine (NAC). The rank order of softness was also directly related to neurotoxic potency as determined by impairment of synaptosomal function and sulfhydryl loss. Calculations of mu showed that the thiolate state of several cysteine analogs was the preferred nucleophilic target of alkene electrophiles. In addition, mu was directly related to the thiolate rate constant (k) for the reaction of the Type-2 alkenes with the cysteine compounds. Finally, in accordance with respective mu values, we found that NAC, but not N-acetyl-L-lysine, protected synaptosomes from toxicity. These findings suggest that the neurotoxicity of ACR and its conjugated alkene analogs is related to electrophilic softness and that the thiolate state of cysteine residues is the corresponding adduct target.


Assuntos
Alcenos/toxicidade , Cisteína/análogos & derivados , Cisteína/farmacologia , Síndromes Neurotóxicas/metabolismo , 1-Propanol/toxicidade , Acroleína/toxicidade , Acrilamida/toxicidade , Acrilatos/toxicidade , Animais , Butanonas/toxicidade , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Etilmaleimida/toxicidade , Masculino , Síndromes Neurotóxicas/etiologia , Propanóis/toxicidade , Teoria Quântica , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
20.
Toxicol Sci ; 95(1): 136-46, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17023561

RESUMO

Acrylamide (ACR) is a conjugated type-2 alkene that produces synaptic toxicity presumably by sulfhydryl adduction. The alpha,beta-unsaturated carbonyl of ACR is a soft electrophile and, therefore, adduction of nucleophilic thiol groups could occur through a conjugate (Michael) addition reaction. To address the mechanism of thiol adduct formation and corresponding neurotoxicological importance, we defined structure-toxicity relationships among a series of conjugated type-2 alkenes (1 microM-10mM), which included acrolein and methylvinyl ketone. Results show that exposure of rat striatal synaptosomes to these chemicals produced parallel, concentration-dependent neurotoxic effects that were correlated to loss of free sulfhydryl groups. Although differences in relative potency were evident, all conjugated analogs tested were equiefficacious with respect to maximal neurotoxicity achieved. In contrast, nonconjugated alkene or aldehyde congeners did not cause synaptosomal dysfunction or sulfhydryl loss. Acrolein and other alpha,beta-unsaturated carbonyls are bifunctional (electrophilic reactivity at the C-1 and C-3 positions) and could produce in vitro neurotoxicity by forming protein cross-links rather than thiol monoadducts. Immunoblot analysis detected slower migrating, presumably derivatized, synaptosomal proteins only at very high acrolein concentrations (>or= 25 mM). Exposure of synaptosomes to high concentrations of ACR (1M), N-ethylmaleimide (10mM), and methyl vinyl ketone (MVK) (100mM) did not alter the gel migration of synaptosomal proteins. Furthermore, hydralazine (1mM), which blocks the formation of protein cross-links, did not affect in vitro acrolein neurotoxicity. Thus, type-2-conjugated alkenes produced synaptosomal toxicity that was linked to a loss of thiol content. This is consistent with our hypothesis that the mechanism of ACR neurotoxicity involves formation of Michael adducts with protein sulfhydryl groups.


Assuntos
Alcenos/toxicidade , Encéfalo/efeitos dos fármacos , Proteínas de Fusão de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Reagentes de Sulfidrila/toxicidade , Acroleína/toxicidade , Acrilamida/toxicidade , Acrilatos/toxicidade , Aldeídos/toxicidade , Alcenos/química , Compostos Alílicos/toxicidade , Animais , Western Blotting , Encéfalo/metabolismo , Butanonas/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Etilmaleimida/toxicidade , Hidralazina/farmacologia , Técnicas In Vitro , Masculino , Neurônios/metabolismo , Propanóis/toxicidade , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Reagentes de Sulfidrila/química , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA