Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Regul Toxicol Pharmacol ; 83: 54-65, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27825987

RESUMO

Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 109 spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs.


Assuntos
Bacillus subtilis/fisiologia , Inocuidade dos Alimentos , Probióticos/toxicidade , Idoso , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/patogenicidade , Qualidade de Produtos para o Consumidor , Impressões Digitais de DNA , DNA Girase/genética , DNA Bacteriano/genética , Método Duplo-Cego , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Feminino , Hemólise , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Ribotipagem , Medição de Risco , Fatores de Tempo
2.
Chem Res Toxicol ; 27(4): 699-709, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24588327

RESUMO

Amodiaquine (AQ) and clozapine (CLZ) are associated with a relatively high incidence of idiosyncratic agranulocytosis, a reaction that is suspected to involve covalent binding of reactive metabolites to neutrophils. Previous studies have shown that both AQ and CLZ are oxidized to reactive intermediates in vitro by activated neutrophils or by the combination of hydrogen peroxide and myeloperoxidase (MPO). Neutrophil activation leads to an oxidative burst with activation of NADPH oxidase and the production of hydrogen peroxide. However, the importance of this pathway in covalent binding in vivo has not been examined. In this study, we found that the binding of both AQ and CLZ to neutrophils from MPO knockout mice ex vivo decreased approximately 2-fold compared to neutrophils from wild-type mice, whereas binding to activated neutrophils from gp91 knockout (NADPH oxidase null) mice decreased 6-7-fold. When the AQ studies were performed in vivo, again the binding was decreased in MPO knockout mice to about 50% of the binding in wild-type mice; however, covalent binding was significant in the absence of MPO. Surprisingly, there was no significant decrease in covalent binding of AQ to neutrophils in vivo in gp91 knockout mice. In addition, there was extensive binding of AQ to many types of bone marrow cells and to peripheral lymphocytes. These results indicate that MPO is not the only neutrophil enzyme involved in the oxidation of AQ and that NADPH oxidase is not the major source of peroxide. There was also no decrease in AQ binding to neutrophils in COX-1 or COX-2 knockout mice. We were not able to readily reproduce the AQ in vivo studies with CLZ because of its acute toxicity in mice. These are the first studies to examine the enzymes involved in the bioactivation of AQ by neutrophils in vivo.


Assuntos
Agranulocitose/induzido quimicamente , Amodiaquina/metabolismo , Clozapina/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Knockout , Ligação Proteica , Ratos , Ratos Sprague-Dawley
3.
Chem Res Toxicol ; 27(7): 1109-19, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24968143

RESUMO

Clozapine is an atypical antipsychotic that is limited in its use due to the risk of idiosyncratic agranulocytosis. The bone marrow is suspected to be the site of the reaction, and indirect measurements in patients suggest that neutrophil production and maturation are altered in the marrow by clozapine. Specifically, the majority of patients have elevated neutrophil counts at the start of treatment, often paired with increased serum granulocyte-colony stimulating factor (G-CSF). Employing a rat model of clozapine treatment, we set out to determine if the neutrophilia observed at the start of treatment is characteristic of G-CSF-associated bone marrow stimulation. Female Sprague-Dawley rats were treated with 30 mg/kg/day of clozapine for 10 days, and sustained neutrophilia was evident after 1 week of treatment paired with spikes in G-CSF. Within the bone marrow, clozapine was found to induce proliferation of the granulocyte progenitor colonies as measured by a methylcellulose assay. This led to elevated granulopoiesis observed by H&E and myeloperoxidase staining of bone marrow slices. Increased release of neutrophils from the marrow to the circulation was measured through 5-bromo-2'-deoxyuridine labeling in vivo, and these neutrophils appeared to be less mature based on (a) a decrease in the nuclear lobe count and (b) increased expression of surface CD62L. Furthermore, faster transit of the neutrophils through the marrow was suggested by a shift toward elevated numbers of neutrophils in the bone marrow maturation pool and increased CD11b and CD18 staining on the less mature neutrophils residing in the marrow. Taken together, these data indicate that clozapine stimulates the bone marrow to produce more neutrophils in a manner that is characteristic of endogenous G-CSF stimulation, and it is consistent with the inflammatory response observed in patients treated with clozapine.


Assuntos
Antipsicóticos/farmacologia , Medula Óssea/efeitos dos fármacos , Clozapina/farmacologia , Células Precursoras de Granulócitos/efeitos dos fármacos , Leucopoese/efeitos dos fármacos , Animais , Antipsicóticos/efeitos adversos , Medula Óssea/fisiologia , Proliferação de Células/efeitos dos fármacos , Clozapina/efeitos adversos , Feminino , Células Precursoras de Granulócitos/citologia , Transtornos Leucocíticos/induzido quimicamente , Ratos Sprague-Dawley
4.
Food Chem Toxicol ; 187: 114565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461950

RESUMO

Melissa officinalis (lemon balm) has a long history of safe use as an aromatic herb, flavoring, tea, food supplement, and traditional medicine. An aqueous extract of the leaves of M. officinalis is intended for use as a food ingredient, however the existing safety database does not contain any high quality toxicological studies to support safe consumer exposure. Therefore, a standard tier 1 genotoxicity battery (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day repeated dose oral toxicity study in rats were conducted in accordance with GLP and OECD guidelines. The genotoxicity studies confirmed that aqueous lemon balm extract is not genotoxic at up to the highest concentrations tested (5000 µg/plate or 5000 µg/mL). A non-GLP 14-day dose range finding study was conducted prior to the 90-day study to confirm dietary administration of aqueous lemon balm extract at concentrations of 0, 0.5, 1.6, or 5.0%. The 90-day study was conducted using the established dietary concentrations and no test substance-related adverse effects on clinical, hematological, biochemical, macroscopic, or histopathologic parameters were reported. Thus, the no-observed-adverse-effect-level was determined to be at least 3046.1 and 3720.9 mg/kg body weight/day (the highest doses tested) for male and female rats, respectively.


Assuntos
Melissa , Masculino , Feminino , Animais , Ratos , Melissa/toxicidade , Extratos Vegetais/toxicidade , Suplementos Nutricionais , Dieta , Mamíferos
5.
Toxicol Sci ; 186(1): 70-82, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34935985

RESUMO

Although clozapine is a highly efficacious schizophrenia treatment, it is under-prescribed due to the risk of idiosyncratic drug-induced agranulocytosis (IDIAG). Clinical data indicate that most patients starting clozapine experience a transient immune response early in treatment and a similar response has been observed in clozapine-treated rats, but the mechanism by which clozapine triggers this transient inflammation remains unclear. Therefore, the aim of this study was to characterize the role of inflammasome activation during the early immune response to clozapine using in vitro and in vivo models. In both differentiated and nondifferentiated human monocytic THP-1 cells, clozapine, but not its structural analogues fluperlapine and olanzapine, caused inflammasome-dependent caspase-1 activation and IL-1ß release that was inhibited using the caspase-1 inhibitor yVAD-cmk. In Sprague Dawley rats, a single dose of clozapine caused an increase in circulating neutrophils and a decrease in lymphocytes within hours of drug administration along with transient spikes in the proinflammatory mediators IL-1ß, CXCL1, and TNF-α in the blood, spleen, and bone marrow. Blockade of inflammasome signaling using the caspase-1 inhibitor VX-765 or the IL-1 receptor antagonist anakinra attenuated this inflammatory response. These data indicate that caspase-1-dependent IL-1ß production is fundamental for the induction of the early immune response to clozapine and, furthermore, support the general hypothesis that inflammasome activation is a common mechanism by which drugs associated with the risk of idiosyncratic reactions trigger early immune system activation. Ultimately, inhibition of inflammasome signaling may reduce the risk of IDIAG, enabling safer, more frequent use of clozapine in patients.


Assuntos
Agranulocitose , Clozapina , Agranulocitose/induzido quimicamente , Animais , Caspase 1 , Clozapina/toxicidade , Humanos , Inflamassomos , Interleucina-1beta/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Ratos Sprague-Dawley
6.
Food Chem Toxicol ; 124: 385-399, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30557670

RESUMO

Low/no-calorie sweeteners (LNCS) are continually under the spotlight in terms of their safety and benefits; in 2014 a study was published linking LNCS to an enhanced risk of glucose intolerance through modulation of the gut microbiota. In response, an in-depth review of the literature was undertaken to evaluate the major contributors to potential changes in the gut microbiota and their corresponding sequelae, and to determine if consuming LNCS (e.g., acesulfame K, aspartame, cyclamate, neotame, saccharin, sucralose, steviol glycosides) contributes to changes in the microbiome based on the data reported in human and animal studies. A few rodent studies with saccharin have reported changes in the gut microbiome, but primarily at high doses that bear no relevance to human consumption. This and other studies suggesting an effect of LNCS on the gut microbiota were found to show no evidence of an actual adverse effect on human health. The sum of the data provides clear evidence that changes in the diet unrelated to LNCS consumption are likely the major determinants of change in gut microbiota numbers and phyla, confirming the viewpoint supported by all the major international food safety and health regulatory authorities that LNCS are safe at currently approved levels.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Edulcorantes/farmacologia , Animais , Humanos , Edulcorantes/metabolismo
8.
Adv Pharmacol ; 63: 81-135, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22776640

RESUMO

If we could predict and prevent idiosyncratic drug reactions (IDRs) it would have a profound effect on drug development and therapy. Given our present lack of mechanistic understanding, this goal remains elusive. Hypothesis testing requires valid animal models with characteristics similar to the idiosyncratic reactions that occur in patients. Although it has not been conclusively demonstrated, it appears that almost all IDRs are immune-mediated, and a dominant characteristic is a delay between starting the drug and the onset of the adverse reaction. In contrast, most animal models are acute and therefore involve a different mechanism than idiosyncratic reactions. There are, however, a few animal models such as the nevirapine-induced skin rash in rats that have characteristics very similar to the idiosyncratic reaction that occurs in humans and presumably have a very similar mechanism. These models have allowed testing hypotheses that would be impossible to test in any other way. In addition there are models in which there is a delayed onset of mild hepatic injury that resolves despite continued treatment similar to the "adaptation" reactions that are more common than severe idiosyncratic hepatotoxicity in humans. This probably represents the development of immune tolerance. However, most attempts to develop animal models by stimulating the immune system have been failures. A specific combination of MHC and T cell receptor may be required, but it is likely more complex. Animal studies that determine the requirements for an immune response would provide vital clues about risk factors for IDRs in patients.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Modelos Animais , Animais , Autoimunidade , Doença Hepática Induzida por Substâncias e Drogas , Modelos Animais de Doenças , Hipersensibilidade a Drogas/etiologia , Exantema/induzido quimicamente , Doenças Hematológicas/induzido quimicamente , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA