Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Ann Plast Surg ; 92(3): 327-334, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394271

RESUMO

BACKGROUND: Soft tissue defects with exposed avascular structures require reconstruction with well-vascularized tissues. Extensive research is ongoing to explore tissue engineered products that provide durable coverage. However, there is a lack of controlled and affordable testbeds in the preclinical setting to reflect this challenging clinical scenario. We aimed to address this gap in the literature and develop a feasible and easily reproducible model in rodents that reflects an avascular structure in the wound bed. METHODS: We created 20 × 20 mm full thickness wounds on the dorsal skin of Lewis rats and secured 0.5-mm-thick silicone sheets of varying sizes to the wound bed. A 3D-printed wound frame was designed to isolate the wound environment. Skin graft and free flap survival along with exposure of the underlying silicone was assessed. Rats were followed for 4 weeks with weekly dressing changes and photography. Samples were retrieved at the endpoint for tissue viability and histologic analysis. RESULTS: The total wound surface area was constant throughout the duration of the experiment in all groups and the wound frames were well tolerated. The portion of the skin graft without underlying silicone demonstrated integration with the underlying fascia and a histologically intact epidermis. Gradual necrosis of the portion of the skin graft overlying the silicone sheet was observed with varying sizes of the silicone sheet. When the size of the silicone sheet was reduced from 50% of the wound surface area, the portion surviving over the silicone sheet increased at the 4-week timepoint. The free flap provided complete coverage over the silicone sheet. CONCLUSION: We developed a novel model of rodent wound healing to maintain the same wound size and isolate the wound environment for up to 4 weeks. This model is clinically relevant to a complex wound with an avascular structure in the wound bed. Skin grafts failed to completely cover increasing sizes of the avascular structure, whereas the free flap was able to provide viable coverage. This cost-effective model will establish an easily reproducible platform to evaluate more complex bioengineered wound coverage solutions.


Assuntos
Roedores , Cicatrização , Ratos , Animais , Ratos Endogâmicos Lew , Transplante de Pele , Silicones , Impressão Tridimensional
2.
Wound Repair Regen ; 31(1): 120-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36053849

RESUMO

Robust and predictive pre-clinical models of recalcitrant diabetic wounds are critical for advancing research efforts toward improving healing. Murine models have logistic and genetic benefits versus larger animals; however, native murine healing inadequately represents clinically recalcitrant wounds in humans. Furthermore, current humanization techniques employing devices, deleterious mutations or chemical agents each carry model-specific limitations. To better replicate human wounds in a mouse, we developed a novel wound-edge inversion (WEI) technique that mimics the architecture of epibole and mitigates contracture, epithelialization, and consequently wound closure. In this study, we evaluated the reliability and durability of the WEI model in wild-type and obese diabetic mice and compared to healing after (i) punch biopsy, (ii) mechanical/silicone stenting or (iii) exogenous oxidative stressors. In wild-type mice, WEI demonstrated favourable closure characteristics compared to both control and stented wounds, however, wounds progressed to closure by 4 weeks. In contrast, diabetic WEI wounds persisted for 6-10 weeks with reduced contracture and epithelialization. In both diabetic and wild-type mice, WEI sites demonstrated persistence of inflammatory populations, absence of epithelialization, and histologic presence of alpha-SMA positive granulation tissue when compared to controls. We conclude that the WEI technique is particularly valuable for modelling recalcitrant diabetic wounds with sustained inflammation and dysfunctional healing.


Assuntos
Diabetes Mellitus Experimental , Cicatrização , Camundongos , Humanos , Animais , Diabetes Mellitus Experimental/patologia , Reprodutibilidade dos Testes , Pele/patologia , Reepitelização
3.
Aesthet Surg J ; 43(6): NP449-NP465, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36611261

RESUMO

BACKGROUND: Autologous fat grafting, although broadly indicated, is limited by unsatisfactory retention and often requires multiple procedures to achieve durable outcomes. Graft survival is strongly influenced by the magnitude and duration of post-engraftment ischemia. Calcitriol is a pleiotropic, safe nutrient with cell-specific influence on viability and metabolic flux. OBJECTIVES: Evaluate the efficacy of activated vitamin D3 (calcitriol) in improving grafting outcomes and examine its mechanisms. METHODS: Lipoaspirate was collected for ex vivo culture (7 unique donors), in vitro bioenergetic analysis (6 unique donors), and in vivo transplantation (5 unique donors). Ex vivo samples were incubated for up to 2 weeks before extraction of the stromal vascular fraction (SVF) for viability or flow cytometry. SVF was collected for Seahorse (Agilent; Santa Clara, CA) analysis of metabolic activity. Human endothelial cell lines were utilized for analyses of endothelial function. In vivo, samples were implanted into athymic mice with calcitriol treatment either (1) once locally or (2) 3 times weekly via intraperitoneal injection. Grafts were assessed photographically, volumetrically, and histologically at 1, 4, and 12 weeks. Hematoxylin and eosin (H&E), Sirius red, perilipin, HIF1α, and CD31 tests were performed. RESULTS: Calcitriol-treated lipoaspirate demonstrated dose-dependent increases in SVF viability and metabolic reserve during hypoxic stress. Calcitriol treatment enhanced endothelial mobility ex vivo and endothelial function in vitro. In vivo, calcitriol enhanced adipocyte viability, reduced fibrosis, and improved vascularity. Continuous calcitriol was sufficient to improve graft retention at 12 weeks (P < .05). CONCLUSIONS: Calcitriol increased fat graft retention in a xenograft model. Calcitriol has potential to be a simple, economical means of increasing fat graft retention and long-term outcomes.


Assuntos
Tecido Adiposo , Calcitriol , Camundongos , Animais , Humanos , Tecido Adiposo/transplante , Calcitriol/farmacologia , Colecalciferol/farmacologia , Xenoenxertos , Adipócitos/transplante , Modelos Animais de Doenças , Sobrevivência de Enxerto
4.
J Immunol ; 204(8): 2203-2215, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32161098

RESUMO

Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-ß1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-ß1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.


Assuntos
Fibrose/imunologia , Fibrose/patologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Células Mieloides/imunologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Cardiotoxinas , Fibrose/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/patologia , Fenótipo , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia
5.
Stem Cells ; 37(6): 766-778, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30786091

RESUMO

Aberrant wound healing presents as inappropriate or insufficient tissue formation. Using a model of musculoskeletal injury, we demonstrate that loss of transforming growth factor-ß activated kinase 1 (TAK1) signaling reduces inappropriate tissue formation (heterotopic ossification) through reduced cellular differentiation. Upon identifying increased proliferation with loss of TAK1 signaling, we considered a regenerative approach to address insufficient tissue production through coordinated inactivation of TAK1 to promote cellular proliferation, followed by reactivation to elicit differentiation and extracellular matrix production. Although the current regenerative medicine paradigm is centered on the effects of drug treatment ("drug on"), the impact of drug withdrawal ("drug off") implicit in these regimens is unknown. Because current TAK1 inhibitors are unable to phenocopy genetic Tak1 loss, we introduce the dual-inducible COmbinational Sequential Inversion ENgineering (COSIEN) mouse model. The COSIEN mouse model, which allows us to study the response to targeted drug treatment ("drug on") and subsequent withdrawal ("drug off") through genetic modification, was used here to inactivate and reactivate Tak1 with the purpose of augmenting tissue regeneration in a calvarial defect model. Our study reveals the importance of both the "drug on" (Cre-mediated inactivation) and "drug off" (Flp-mediated reactivation) states during regenerative therapy using a mouse model with broad utility to study targeted therapies for disease. Stem Cells 2019;37:766-778.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fraturas Ósseas/genética , MAP Quinase Quinase Quinases/genética , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/enzimologia , Cicatrização/genética , Animais , Regeneração Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Feminino , Efeito Fundador , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/enzimologia , Fraturas Ósseas/patologia , Regulação da Expressão Gênica , Integrases/genética , Integrases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/deficiência , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/metabolismo , Cicatrização/efeitos dos fármacos
6.
Am J Pathol ; 188(11): 2464-2473, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142335

RESUMO

Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.


Assuntos
Queimaduras/complicações , Modelos Animais de Doenças , Inflamação/patologia , Células-Tronco Mesenquimais/patologia , Ossificação Heterotópica/patologia , Animais , Feminino , Inflamação/sangue , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Ossificação Heterotópica/sangue , Ossificação Heterotópica/etiologia , Osteogênese , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 113(3): E338-47, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26721400

RESUMO

Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1α(fl:fl)) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Ossificação Heterotópica/genética , Ossificação Heterotópica/prevenção & controle , Ferimentos e Lesões/complicações , Receptores de Ativinas Tipo I/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Queimaduras/complicações , Queimaduras/genética , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Modelos Animais de Doenças , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Integrases/metabolismo , Medições Luminescentes , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Knockout , Modelos Biológicos , Compostos de Mostarda/farmacologia , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/tratamento farmacológico , Fenilpropionatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Tendões/efeitos dos fármacos , Tendões/patologia , Tendões/cirurgia , Tenotomia , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/patologia , Microtomografia por Raio-X
8.
Am J Pathol ; 187(11): 2536-2545, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29029772

RESUMO

A pressing clinical need exists for 63% to 65% of combat-wounded service members and 11% to 20% of civilians who develop heterotopic ossification (HO) after blast-related extremity injury and traumatic injuries, respectively. The mammalian target of rapamycin pathway is a central cellular sensor of injury. We evaluated the prophylactic effects of rapamycin, a selective inhibitor of mammalian target of rapamycin signaling, on HO formation in a rat model of blast-related, polytraumatic extremity injury. Rapamycin was administered intraperitoneally daily for 14 days at 0.5 mg/kg or 2.5 mg/kg. Ectopic bone formation was monitored by micro-computed tomography and confirmed by histologic examination. Connective tissue progenitor cells, platelet-derived growth factor receptor-α-positive cells, and α-smooth muscle actin-positive blood vessels were assayed at postoperative day 7 by colony formation and immunofluorescence. Early gene expression changes were determined by low-density microarray. There was significant attenuation of 1) total new bone and soft tissue ectopic bone with 0.5 mg/kg (38.5% and 14.7%) and 2.5 mg/kg rapamycin (90.3% and 82.9%), respectively, 2) connective tissue progenitor cells, 3) platelet-derived growth factor receptor-α-positive cells, 4) α-smooth muscle actin-positive blood vessels, and 5) of key extracellular matrix remodeling (CD44, Col1a1, integrins), osteogenesis (Sp7, Runx2, Bmp2), inflammation (Cxcl5, 10, IL6, Ccl2), and angiogenesis (Angpt2) genes. No wound healing complications were noted. Our data demonstrate the efficacy of rapamycin in inhibiting blast trauma-induced HO by a multipronged mechanism.


Assuntos
Osso e Ossos/efeitos dos fármacos , Ossificação Heterotópica/prevenção & controle , Osteogênese/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Traumatismos por Explosões/complicações , Osso e Ossos/patologia , Modelos Animais de Doenças , Masculino , Ossificação Heterotópica/patologia , Osteogênese/genética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Microtomografia por Raio-X/métodos
9.
Stem Cells ; 35(3): 705-710, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862618

RESUMO

The pathologic development of heterotopic ossification (HO) is well described in patients with extensive trauma or with hyperactivating mutations of the bone morphogenetic protein (BMP) receptor ACVR1. However, identification of progenitor cells contributing to this process remains elusive. Here we show that connective tissue cells contribute to a substantial amount of HO anlagen caused by trauma using postnatal, tamoxifen-inducible, scleraxis-lineage restricted reporter mice (Scx-creERT2/tdTomatofl/fl ). When the scleraxis-lineage is restricted specifically to adults prior to injury marked cells contribute to each stage of the developing HO anlagen and coexpress markers of endochondral ossification (Osterix, SOX9). Furthermore, these adult preinjury restricted cells coexpressed mesenchymal stem cell markers including PDGFRα, Sca1, and S100A4 in HO. When constitutively active ACVR1 (caACVR1) was expressed in scx-cre cells in the absence of injury (Scx-cre/caACVR1fl/fl ), tendons and joints formed HO. Postnatal lineage-restricted, tamoxifen-inducible caACVR1 expression (Scx-creERT2/caACVR1fl/fl ) was sufficient to form HO after directed cardiotoxin-induced muscle injury. These findings suggest that cells expressing scleraxis within muscle or tendon contribute to HO in the setting of both trauma or hyperactive BMP receptor (e.g., caACVR1) activity. Stem Cells 2017;35:705-710.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Músculos/patologia , Ossificação Heterotópica/patologia , Tendões/patologia , Receptores de Ativinas Tipo I/metabolismo , Animais , Integrases/metabolismo , Articulações/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ossificação Heterotópica/etiologia , Fenótipo , Ferimentos e Lesões/complicações , Ferimentos e Lesões/patologia
10.
Mol Ther ; 25(8): 1974-1987, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28716575

RESUMO

Trauma-induced heterotopic ossification (tHO) is a condition of pathologic wound healing, defined by the progressive formation of ectopic bone in soft tissue following severe burns or trauma. Because previous studies have shown that genetic variants of HO, such as fibrodysplasia ossificans progressiva (FOP), are caused by hyperactivating mutations of the type I bone morphogenetic protein receptor (T1-BMPR) ACVR1/ALK2, studies evaluating therapies for HO have been directed primarily toward drugs for this specific receptor. However, patients with tHO do not carry known T1-BMPR mutations. Here we show that, although BMP signaling is required for tHO, no single T1-BMPR (ACVR1/ALK2, BMPR1a/ALK3, or BMPR1b/ALK6) alone is necessary for this disease, suggesting that these receptors have functional redundancy in the setting of tHO. By utilizing two different classes of BMP signaling inhibitors, we developed a translational approach to treatment, integrating treatment choice with existing diagnostic options. Our treatment paradigm balances either immediate therapy with reduced risk for adverse effects (Alk3-Fc) or delayed therapy with improved patient selection but greater risk for adverse effects (LDN-212854).


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/genética , Marcação de Genes , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/patologia , Ferimentos e Lesões/complicações , Receptores de Ativinas Tipo I/deficiência , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Humanos , Ligantes , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Ossificação Heterotópica/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia
11.
Stem Cells ; 34(6): 1692-701, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068890

RESUMO

Heterotopic ossification (HO), the formation of extra-skeletal bone in soft tissues, is a pathologic process occurring after substantial burns or trauma, or in patients with type I bone morphogenetic protein (BMP) receptor hyperactivating mutations. Identifying the cells responsible for de novo bone formation during adulthood is of critical importance for therapeutic and regenerative purposes. Using a model of trauma-induced HO with hind limb Achilles' tenotomy and dorsal burn injury and a genetic nontrauma HO model (Nfatc1-Cre/caAcvr1(fl/wt) ), we demonstrate enrichment of previously defined bone-cartilage-stromal progenitor cells (BCSP: AlphaV+/CD105+/Tie2-/CD45-/Thy1-/6C3-) at the site of HO formation when compared with marrow isolated from the ipsilateral hind limb, or from tissue of the contralateral, uninjured hind limb. Upon transplantation into tenotomy sites soon after injury, BCSPs isolated from neonatal mice or developing HO incorporate into the developing lesion in cartilage and bone and express chondrogenic and osteogenic transcription factors. Additionally, BCSPs isolated from developing HO similarly incorporate into new HO lesions upon transplantation. Finally, adventitial cells, but not pericytes, appear to play a supportive role in HO formation. Our findings indicate that BCSPs contribute to de novo bone formation during adulthood and may hold substantial regenerative potential. Stem Cells 2016;34:1692-1701.


Assuntos
Osso e Ossos/citologia , Cartilagem/citologia , Modelos Genéticos , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/genética , Transplante de Células-Tronco , Células-Tronco/citologia , Ferimentos e Lesões/complicações , Tendão do Calcâneo/patologia , Tendão do Calcâneo/cirurgia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ossificação Heterotópica/patologia , Ossificação Heterotópica/terapia , Osteoblastos/patologia , Osteogênese , Pericitos/patologia , Células Estromais/citologia , Tenotomia , Ferimentos e Lesões/patologia
12.
J Surg Res ; 209: 174-177, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032556

RESUMO

BACKGROUND: Angiogenesis, the formation of blood vessels, is a critical aspect of wound healing. Disorders of wound healing are often characterized by lack of angiogenesis, a condition frequently observed in aging and diabetic patients. Current techniques for assessing blood at injury sites are limited to contrast-imaging, including angiography. However, these techniques do not directly observe oxygenation of blood and are not amenable to serial evaluation. A multimodal noninvasive reflectance and Raman spectrometer have been proposed to help clinicians as a point-of-care tool to interrogate local angiogenesis and tissue architecture, respectively. The spectrometer system is a rapid, noninvasive, and label-free technology well-suited for the clinical environment. MATERIALS AND METHODS: To demonstrate feasibility, the spectrometer system was used to interrogate angiogenesis serially over 9 wk as a result of heterotopic ossification (HO) development in a validated murine model. End-stage HO was confirmed by micro-computed tomography. RESULTS: Our preliminary results suggest that reflectance spectroscopy can be used to delineate vessel formation and that pathologic wounds may be characterized by unique spectra. In our model, HO formed at sites 1-3, whereas sites 4 and 5 did not have radiographic evidence of HO. CONCLUSIONS: A point-of-care system like that demonstrated here shows potential as a noninvasive tool to assess local angiogenesis and tissue architecture that may allow for timely intervention in a clinical setting.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Neovascularização Fisiológica , Análise Espectral Raman/métodos , Cicatrização , Microtomografia por Raio-X/métodos , Animais , Camundongos
13.
Wound Repair Regen ; 25(3): 521-525, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28513105

RESUMO

The bone morphogenic protein signaling (BMP) is intricately involved in the quiescence and regulation of stem cells through activation of BMP receptors. Hair follicle stem cells play a critical role in cutaneous homeostasis and regeneration. Here, we utilize a novel mouse model with targeted overexpression of the BMP receptor ALK2/ACVR1 in hair follicle stem cells, to characterize its role in skin development and postnatal wound healing. Initial histologic evaluation demonstrated significant dysregulation in hair follicle morphogenesis in mutant mice. These demonstrated increased numbers of individual hair follicles with altered morphology and localization. Mutant follicles were found to exhibit elevated proliferative activity as well as increased prevalence of CD34 and ITGA6 positive follicle stem cells. Interestingly, constitutive overexpression of ALK2 resulted in attenuation of cutaneous wound healing. These findings demonstrate that hair follicle specific ALK2 is intricately involved in maintenance of the stem cell niche and wound healing.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Folículo Piloso/citologia , Regeneração/fisiologia , Cicatrização/fisiologia , Ferimentos e Lesões/terapia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Folículo Piloso/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Morfogênese , Transdução de Sinais/fisiologia
15.
Dev Biol ; 400(2): 202-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25722188

RESUMO

BMP signaling mediated by ACVR1 plays a critical role for development of multiple structures including the cardiovascular and skeletal systems. While deficient ACVR1 signaling impairs normal embryonic development, hyperactive ACVR1 function (R206H in humans and Q207D mutation in mice, ca-ACVR1) results in formation of heterotopic ossification (HO). We developed a mouse line, which conditionally expresses ca-ACVR1 with Nfatc1-Cre(+) transgene. Mutant mice developed ectopic cartilage and bone at the distal joints of the extremities including the interphalangeal joints and hind limb ankles as early as P4 in the absence of trauma or exogenous bone morphogenetic protein (BMP) administration. Micro-CT showed that even at later time points (up to P40), cartilage and bone development persisted at the affected joints most prominently in the ankle. Interestingly, this phenotype was not present in areas of bone outside of the joints - tibia are normal in mutants and littermate controls away from the ankle. These findings demonstrate that this model may allow for further studies of heterotopic ossification, which does not require the use of stem cells, direct trauma or activation with exogenous Cre gene administration.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Ossificação Heterotópica/genética , Transdução de Sinais , Receptores de Ativinas Tipo I/genética , Animais , Camundongos , Mutação , Fatores de Transcrição NFATC , Osteoblastos/metabolismo , Osteogênese
16.
Ann Surg ; 264(6): 1174-1180, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26779981

RESUMO

OBJECTIVE: The objective of this study was to determine the contribution of lymphatic tissue to heterotopic ossification (HO). BACKGROUND: HO is the pathologic development of ectopic bone within soft tissues often following severe trauma. Characterization of the tissue niche supporting HO is critical to identifying therapies directed against this condition. Lymphangiogenesis is upregulated during incidents of trauma, thereby coincident with the niche supportive of HO. We hypothesized that lymphatic tissues play a critical role in HO formation. METHODS: Mice underwent hindlimb Achilles' tendon transection and dorsal burn injury (burn/tenotomy) to induce HO. The popliteal and inguinal lymph nodes were excised ipsilateral to the tenotomy site. Flow cytometry and immunostaining were used to quantify and localize lymphoendothelium. MicroCT was used to quantify HO. RESULTS: Enrichment of mature lymphatic tissues was noted 2 weeks after injury at the tendon transection sites when compared with the contralateral, intact tendon based on LYVE1+ tubules (10.9% vs 0.8%, P < 0.05). Excision of the inguinal and popliteal nodes with draining popliteal lymphatic vessel significantly decreased the presence of mature lymphoendothelium 2 weeks after injury (10.9% vs 3.3%, P < 0.05). Bone-cartilage-stromal progenitor cells (CD105+/AlphaV+/Tie2-/CD45-/CD90-/BP1-) were also significantly decreased after lymph node excision (10.2% vs 0.5%, P < 0.05). A significant decrease was noted in the volume of de novo HO present within the soft tissues (0.12 mm vs 0.02 mm). CONCLUSION: These findings suggest that lymphatic vessels are intimately linked with the de novo formation bone within soft tissues following trauma, and their presence may facilitate bone formation.


Assuntos
Tendão do Calcâneo/lesões , Queimaduras/complicações , Linfangiogênese , Ossificação Heterotópica/patologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Excisão de Linfonodo , Camundongos , Ossificação Heterotópica/diagnóstico por imagem , Microtomografia por Raio-X
17.
J Surg Res ; 206(1): 53-61, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27916375

RESUMO

BACKGROUND: Heterotopic ossification (HO) is the pathologic process of extraskeletal bone formation. Although the exact etiology remains unknown, inflammation appears to catalyze disease progression. The goal of this study is to determine the impact of the adaptive immune system on HO. METHODS: HO was induced in 8-wk-old control C57BL/6 and immunocompromised Rag1tm1Mom (Rag1 KO) male mice deficient in B- and T-lymphocytes via combined Achilles tenotomy and burn injury. Microcomputed tomography quantified the extent of HO formation at the tenotomy site. Adipose-derived mesenchymal stem cells were harvested to evaluate osteogenic differentiation potential. RESULTS: Areas of developing HO demonstrated substantial enrichment of CD45 + leukocytes at 3 wk after injury. HO from Rag1 KO mice was substantially less mature with foci of cartilage and disorganized trabecular bone present 12 wk after injury. Rag1 KO mice formed 60% less bone compared to immunocompetent controls (4.67 ± 1.5 mm versus 7.76 ± 0.65 mm; P = 0.001). Tartrate-resistant acid phosphatase staining and immunofluorescent analysis of osteoprotegerin and nuclear factor kappa-light-chain-enhancer of activated B cells demonstrated no appreciable difference in osteoclast number or activation. Alizarin red staining in vitro demonstrated a significant decrease in osteogenic potential in immunocompromised mice compared to controls (29.1 ± 0.54 mm versus 12.1 ± 0.14 mm; P < 0.001). CONCLUSIONS: We demonstrate a prominent role for the adaptive immune system in the development of HO. In the absence of mature B- and T-lymphocytes, HO growth and development are attenuated. Furthermore, we demonstrate that mesenchymal populations from B- and T-cell deficient mice are inherently less osteogenic. This study identifies a potential therapeutic role for modulation of the adaptive immune system in the treatment of HO.


Assuntos
Imunidade Adaptativa , Queimaduras/complicações , Diferenciação Celular/imunologia , Células-Tronco Mesenquimais/fisiologia , Ossificação Heterotópica/etiologia , Osteogênese/imunologia , Animais , Queimaduras/imunologia , Masculino , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/imunologia , Microtomografia por Raio-X
18.
J Craniofac Surg ; 27(3): 621-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27100641

RESUMO

INTRODUCTION: Analytical morphomics focuses on extracting objective and quantifiable data from clinical computed tomography (CT) scans to measure patients' frailty. Studies are currently retrospective in nature; therefore, it would be beneficial to develop animal models for well-controlled, prospective studies. The aim of this study is to develop an in vivo microCT protocol for the longitudinal acquisition of whole-body images suitable for morphomic analyses of bone. METHODS: The authors performed phantom studies on 2 microCT systems (Inveon and CT120) to study tissue radiodensity and further characterize system performance for collecting animal data. The authors also describe their design of a phantom-immobilization device using phantoms and an ovariectomized (OVX) mouse. RESULTS: The authors discovered increased consistency along the z-axis for scans acquired on the Inveon compared with CT120, and calibration by individual slice reduces variability. Objects in the field of view had more impact on measurement acquired using the CT120 compared with the Inveon. The authors also found that using the middle 80% of slices for data analysis further decreased variability, on both systems. Moreover, bone-mineral-density calibration using the QCT Pro Mini phantom improved bone-mineral-density estimates across energy spectra, which helped confirm our technique. Comparison of weekly body weights and terminal uterine mass between sham and OVX groups validated our model. DISCUSSION: The authors present a refined microCT protocol to collect reliable and objective data. This data will be used to establish a platform for research animal morphomics that can be used to test hypotheses developed from clinical human morphomics.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Animais , Pesos e Medidas Corporais , Osso e Ossos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Estudos Retrospectivos , Microtomografia por Raio-X
20.
Ann Surg ; 261(3): 611-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509194

RESUMO

OBJECTIVE: The aim of this study was to demonstrate lymphatic isolation in a model of hind limb lymph node (LN) excision, consisting of ipsilateral popliteal and inguinal LN excision and to evaluate the immunologic response to allogeneic skin transplanted onto this region of lymphatic isolation. METHODS: To study lymphatic flow, C57BL/6 mice underwent lymphadenectomy (n = 5), sham lymphadenectomy (n = 5), or no intervention (n = 5), followed by methylene blue injection. Mice were dissected to determine whether methylene blue traveled to the iliac LN. To study host response to skin transplantation, C57BL/6 mice underwent allogeneic skin transplantation with LN excision (n = 6), allogeneic skin transplantation alone (n = 6), or syngeneic skin transplantation (n = 4). Skin grafts were placed distal to the popliteal fossa and mice were euthanized at day 10. Grafts were stained for endothelial cell and proliferation markers (CD31 and Ki67, respectively). Secondary lymphoid tissues (spleen, ipsilateral axillary LN, and contralateral inguinal LN) were removed and rechallenged with BALB/c alloantigen in vitro with subsequent assay of interferon-γ and interleukin 4 cell expression using ELISPOT technique. RESULTS: Mice that underwent LN excision had no evidence of methylene blue in the iliac nodes; mice without surgical intervention or with sham LN excision consistently had methylene blue visible in the ipsilateral iliac nodes. Mice treated with allogeneic skin transplantation and LN excision had lower expression of interferon-γ and interleukin 4 in the secondary lymphoid tissues. CONCLUSIONS: Lymph node excision completely interrupts lymphatic flow of the hind limb. This model of lymphatic isolation impairs the ability of the transplant recipient to acutely mount a Th1 or Th2 response to allogeneic skin transplants.


Assuntos
Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Excisão de Linfonodo , Transplante de Pele , Aloenxertos , Animais , Biomarcadores/análise , Citocinas/metabolismo , Membro Posterior , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA