Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(15): e0097120, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011540

RESUMO

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Infecções por HIV/patologia , HIV-1/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células HEK293 , HIV-1/metabolismo , Células HeLa , Humanos , Macrófagos/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
2.
Virologie (Montrouge) ; 26(1): 41-53, 2022 02 24.
Artigo em Francês | MEDLINE | ID: mdl-35766085

RESUMO

Résumé La thérapie antirétrovirale (TAR) inhibe la réplication du VIH-1 mais n'est pas curative. Pendant la TAR, le génome intégré du VIH-1 persiste principalement dans les lymphocytes T mémoires CD4+ ainsi que dans d'autres cellules immunitaires, notamment les cellules myéloïdes comme les macrophages. La majorité de ces cellules ne produisent pas de particules virales infectieuses et constituent le réservoir latent. D'importants progrès ont été réalisés dans l'identification des facteurs qui contribuent à l'établissement et au maintien du réservoir latent qui demeure le principal obstacle à l'éradication du VIH-1. Dans cette revue, nous mettrons en relief le rôle des microARN dans le développement des réservoirs viraux vu que ceux-ci sont d'importants modulateurs de l'expression génique, ciblant des facteurs de transcription ainsi que d'autres effecteurs nécessaires à l'infection productive du VIH-1. Certains microARN ciblent même directement les transcrits viraux. Nous soulignerons les grandes questions en suspens sur la participation active des microARN de l'hôte aux mécanismes de persistance virale et notamment ceux régissant la latence virale. Finalement, compte tenu des stratégies actuelles qui ne permettent toujours pas de réduire efficacement les réservoirs viraux, les perspectives quant à l'utilisation des microARN comme approche pour contrer la persistance des réservoirs latents seront discutées.


Assuntos
HIV-1 , MicroRNAs , Humanos
3.
Can J Physiol Pharmacol ; 96(5): 459-470, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414245

RESUMO

To support bradykinin (BK) B2 receptor (B2R) detection and therapeutic stimulation, we developed and characterized fusion proteins consisting of the BK homolog maximakinin (MK), or variants, positioned at the C-terminus of functional proteins (enhanced green fluorescent protein (EGFP), the peroxidase APEX2, or human serum albumin (HSA)). EGFP-MK loses its reactivity with anti-BK antibodies and molecular mass as it progresses in the endosomal tract of cells expressing rat B2Rs (immunoblots, epifluorescence microscopy). APEX2-(NG)15-MK is a bona fide agonist of the rat, but not of the human B2R (calcium and c-Fos signaling) and is compatible with the cytochemistry reagent TrueBlue (microscopy), a luminol-based reagent, or 3,3',5,5'-tetramethylbenzidine (luminescence or colourimetric B2R detection, cell well plate format). APEX2-(NG)15-MK is a non-isotopic ligand suitable for drug discovery via binding competition. Affinity-purified secreted forms of HSA fused with peptides possessing the C-terminal MK or BK sequence failed to stimulate the rat B2R in the concentration range of 50-600 nmol/L. However, the non-secreted construction myc-HSA-MK is a B2R agonist, indicating that protein denaturation made the C-terminal sequence available for receptor binding. Fusion protein ligands of the B2R are stable but subjected to slow intracellular inactivation, strong species specificity, and possible steric hindrance between the receptor and large proteins.


Assuntos
Bradicinina/química , Bradicinina/farmacologia , Receptor B2 da Bradicinina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Ratos , Relação Estrutura-Atividade
4.
Mol Microbiol ; 89(3): 565-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23782314

RESUMO

Drug resistance is a major public health challenge in leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV-1 co-infections. We have delineated the mechanism of cell death induced by the HIV-1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to further study Nelfinavir-Leishmania interactions, we selected Nelfinavir-resistant axenic amastigotes in vitro and characterized them. RNA expression profiling analyses and comparative genomic hybridizations of closely related Leishmania species were used as a screening tool to compare Nelfinavir-resistant and -sensitive parasites in order to identify candidate genes involved in drug resistance. Microarray analyses of Nelfinavir-resistant and -sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters. Transporter assays using radiolabelled Nelfinavir suggest a greater drug accumulation in the resistant parasites and in a time-dependent manner. Furthermore, high-resolution electron microscopy and measurements of intracellular polyphosphate levels showed an increased number of cytoplasmic vesicular compartments known as acidocalcisomes in Nelfinavir-resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in drug-induced intracellular vesicles.


Assuntos
Resistência a Medicamentos , Leishmania donovani/genética , Nelfinavir/farmacologia , Aneuploidia , Células Cultivadas , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Humanos , Leishmania donovani/efeitos dos fármacos , Macrófagos/parasitologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Protozoário/genética , Regulação para Cima
5.
J Virol ; 87(2): 735-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115275

RESUMO

HIV-1 endocytosis by a macropinocytosis-like mechanism has been shown to lead to productive infection in macrophages. However, little is known of this pathway. In this study, we examined HIV-1 endocytosis using biochemical approaches and imaging techniques in order to better understand the mechanisms that allow for productive infection of these cells via the endosomal pathway. We show here that this macropinocytosis-like mechanism is not the sole pathway involved in HIV-1 endocytosis in macrophages. However, this pathway specifically requires CCR5 engagement at the cell surface, which in turn suggests that the virus and its coreceptor are present in the endosomal environment simultaneously. Furthermore, although we observed efficient viral degradation following endocytosis, analyses of HIV-1 transport through the endolysosomal pathway revealed that viral degradation is delayed following endosomal internalization, possibly allowing the virus to complete its fusion.


Assuntos
HIV-1/fisiologia , Macrófagos/virologia , Pinocitose , Receptores CCR5/metabolismo , Ligação Viral , Internalização do Vírus , Humanos , Receptores de HIV/metabolismo
6.
Cell Rep ; 43(7): 114414, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943643

RESUMO

The intestinal environment facilitates HIV-1 infection via mechanisms involving the gut-homing vitamin A-derived retinoic acid (RA), which transcriptionally reprograms CD4+ T cells for increased HIV-1 replication/outgrowth. Consistently, colon-infiltrating CD4+ T cells carry replication-competent viral reservoirs in people with HIV-1 (PWH) receiving antiretroviral therapy (ART). Intriguingly, integrative infection in colon macrophages, a pool replenished by monocytes, represents a rare event in ART-treated PWH, thus questioning the effect of RA on macrophages. Here, we demonstrate that RA enhances R5 but not X4 HIV-1 replication in monocyte-derived macrophages (MDMs). RNA sequencing, gene set variation analysis, and HIV interactor NCBI database interrogation reveal RA-mediated transcriptional reprogramming associated with metabolic/inflammatory processes and HIV-1 resistance/dependency factors. Functional validations uncover post-entry mechanisms of RA action including SAMHD1-modulated reverse transcription and CDK9/RNA polymerase II (RNAPII)-dependent transcription under the control of mammalian target of rapamycin (mTOR). These results support a model in which macrophages residing in the intestine of ART-untreated PWH contribute to viral replication/dissemination in an mTOR-sensitive manner.

7.
J Virol ; 86(19): 10399-407, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787228

RESUMO

HIV-1 is an enveloped virus that enters target cells by fusion either directly at the plasma membrane or at the endosomal membrane. The latter mechanism follows a rapid engulfment of HIV-1 after its receptor engagement at the cell surface, and its scale depends on cellular endocytosis/degradation rates and virus fusion kinetics. HIV-1 has recently been shown to exploit a novel Pak1-dependent macropinocytosis mechanism as a way to productively infect macrophages. However, macrophages are highly heterogeneous cells that can adapt functionally to their changing environment, and their endosomal/lysosomal pathway is highly regulated upon cell activation. These changes might impact the ability of HIV-1 to exploit endocytosis as a way to productively infect macrophages. In this study, we compared HIV-1 endocytosis/degradation rates in nonactivated, M1-activated, and M2a-activated monocyte-derived macrophages (MDMs). We found that the rate of HIV-1 endocytosis was increased in M1-activated but decreased in M2a-activated MDMs. However, both M1 and M2a activations of MDMs led specifically to a greater clathrin-mediated endocytosis of HIV-1, which was independent of CD4 and CCR5 binding. Furthermore, clathrin-mediated endocytosis is unlikely to result in productive HIV-1 infection, given that it leads to increased viral degradation. Therefore, we suggest that viral fusion following endocytosis is restricted in activated macrophages.


Assuntos
Infecções por HIV/sangue , HIV-1/enzimologia , Macrófagos/virologia , Antígenos CD4/biossíntese , Membrana Celular/virologia , Sobrevivência Celular , Clatrina/metabolismo , Endocitose , Endossomos/metabolismo , Predisposição Genética para Doença , Células HEK293 , Infecções por HIV/virologia , Células HeLa , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Genéticos , Receptores CCR5/metabolismo
8.
Pharmacol Res ; 71: 44-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454239

RESUMO

The bradykinin (BK) B2 receptor (B2R) is G protein coupled and phosphorylated upon agonist stimulation; its endocytosis and recycling are documented. We assessed the effect of drugs that affect the cytoskeleton on B2R cycling. These drugs were targeted to tubulin (paclitaxel, or the novel combretastatin A-4 mimetic 3,4,5-trimethoxyphenyl-4-(2-oxoimidazolidin-1-yl)benzenesulfonate [IMZ-602]) and actin (cytochalasin D). Tubulin ligands did not alter agonist-induced receptor endocytosis, as shown using antibodies reactive with myc-tagged B2Rs (microscopy, cytofluorometry), but rather reduced the progression of the ligand-receptor-ß-arrestin complex from the cell periphery to the interior. The 3 fluorescent probes of this complex (B2R-green fluorescent protein [B2R-GFP], the fluorescent agonist fluorescein-5-thiocarbamoyl-D-Arg-[Hyp³, Igl5, Oic7, Igl8]-BK and ß-arrestin2-GFP) were condensed in punctuate structures that remained close to the cell surface in the presence of IMZ-602. Cytochalasin D selectively inhibited the recycling of endocytosed B2R-GFP (B2R-GFP imaging, [³H]BK binding). Dominant negative (GDP-locked)-Rab5 and -Rab11 reproduced the effects of inhibitors of tubulin and actin, respectively, on the cycling of B2R-GFP. GDP-locked-Rab4 also inhibited B2R-GFP recycling to the cell surface. Consistent with the displacement of cargo along specific cytoskeletal elements, Rab5-associated progression of the endocytosed BK B2R follows microtubules toward their (-) end, while its recycling progresses along actin fibers to the cell surface. However, tubulin ligands do not suppress the tested desensitization or resensitization mechanisms of the B2R.


Assuntos
Citoesqueleto/efeitos dos fármacos , Mutação , Receptor B2 da Bradicinina/metabolismo , Moduladores de Tubulina/farmacologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , Actinas/antagonistas & inibidores , Bradicinina/metabolismo , Citocalasina D/farmacologia , Endocitose/efeitos dos fármacos , Guanosina Difosfato/metabolismo , Células HEK293 , Humanos , Transporte Proteico/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
9.
mBio ; 14(5): e0195023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37773002

RESUMO

IMPORTANCE: In order to efficiently produce infectious viral particles, HIV must counter several restrictions exerted by host cell antiviral proteins. MARCH1 is a member of the MARCH protein family that restricts HIV infection by limiting the incorporation of viral envelope glycoproteins into nascent virions. Here, we identified two regulatory RNAs, microRNAs-25 and -93, induced by the HIV-1 accessory protein Vpu, that downregulate MARCH1 mRNA. We also show that Vpu induces these cellular microRNAs in macrophages by hijacking the cellular ß-catenin pathway. The notion that HIV-1 has evolved a mechanism to counteract MARCH1 restriction on viral infectivity underlines the importance of MARCH1 in the host antiviral response.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , MicroRNAs , Humanos , Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Antivirais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Proteínas Ligadas por GPI/metabolismo
10.
Toxicol Appl Pharmacol ; 259(1): 1-12, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22198553

RESUMO

"Lysosomotropic" cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.


Assuntos
Preparações Farmacêuticas/metabolismo , Vacúolos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Transporte Biológico , Cátions , Endocitose/efeitos dos fármacos , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Mitose/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/metabolismo , Preparações Farmacêuticas/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia
11.
iScience ; 25(10): 105234, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36267915

RESUMO

Activated-to-memory transitioning CD4+ T cells display elevated expression of the HIV-1 co-receptor CCR5 and are more prone to HIV-1 latent infection. Here, we show that p53-regulated miRNA-103 downmodulates CCR5 levels in CD4+ T lymphocytes. We reveal that miRNA-103 mimics, as well as Nutlin-3, an inhibitor of Mdm2-mediated p53 degradation, decrease CCR5-dependent HIV-1 infection. Using a dual-reporter virus, we subsequently validate that in transitioning CD4+ T cells, Nutlin-3 treatment decreases the frequency of both productively and latently infected cells via upregulation of miRNA-103. Importantly, we provide evidence that CD4+ T cells from HIV-1 elite controllers express less CCR5 than those from antiretroviral therapy-naïve progressors, an effect linked to a significant increase in miRNA-103 levels. By contributing to the control of CCR5 expression in CD4+ T cells, miRNA-103 is likely to play a key role in countering the establishment of latent HIV-1 reservoirs in vivo.

12.
J Pharmacol Exp Ther ; 337(1): 33-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21205920

RESUMO

The known structure-activity relationship and docking models for peptide ligands of the bradykinin B(2) receptor indicate a certain tolerance to N-terminal extension. We took advantage of this by generating two fluorescent bradykinin analogs containing 5(6)-carboxyfluorescein (CF) optionally used with the ε-aminocaproyl spacer condensed at the N terminus of the agonist. Pharmacological studies indicated that CF-bradykinin was virtually inactive as a B(2) receptor ligand and agonist, whereas CF-ε-aminocaproyl-bradykinin (CF-εACA-BK) was 400- to 1000-fold less potent than bradykinin (competition of [(3)H]bradykinin binding to B(2) receptors, contractility of the human isolated umbilical vein). Nevertheless, CF-εACA-BK (5 µM) was taken up by human embryonic kidney 293a cells expressing recombinant B(2) receptors, but not by those cotreated with an antagonist or expressing a truncated receptor that is pharmacologically intact but not phosphorylable. A higher-affinity CF-conjugated peptide, the antagonist CF-εACA-d-Arg-[Hyp(3),Igl(5),d-Igl(7),Oic(8)]-bradykinin (B-10380), labeled both intact and truncated receptor forms at the cell surface. The fluorescent agonist CF-εACA-BK was found in vesicles positive for ß-arrestin(1), Rab5, and Rab7, then apparently degraded as a function of time because the fluorescence was transferred from the vesicles to the cytosol in a vesicular-ATPase-dependent process (3 h). The ectopeptidase angiotensin-converting enzyme (ACE) is a major kininase. The binding affinity of CF-εACA-BK for this carboxydipeptidase is identical to that of bradykinin ([(3)H]enalaprilat displacement assay). Recombinant ACE is essentially a plasma membrane protein in CF-εACA-BK imaging of intact cells. Micromolar CF-εACA-BK is a probe for the two major physiological targets of bradykinin, the B(2) receptor and ACE. As an agonist, it is subjected to ß-arrestin-mediated endocytosis, trafficking, and subsequent ligand degradation.


Assuntos
Bradicinina/análogos & derivados , Bradicinina/metabolismo , Endocitose/fisiologia , Corantes Fluorescentes/metabolismo , Peptidil Dipeptidase A/metabolismo , Receptor B2 da Bradicinina/agonistas , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Microscopia de Fluorescência/métodos , Técnicas de Cultura de Órgãos , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Receptor B2 da Bradicinina/metabolismo , Relação Estrutura-Atividade , Veias Umbilicais/química , Veias Umbilicais/metabolismo
13.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127461

RESUMO

Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/ß-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/ß-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors.IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/ß-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/ß-catenin pathway and peroxisome homeostasis.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Peroxissomos/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Ácidos Graxos/metabolismo , Regulação Viral da Expressão Gênica , Infecções por HIV/imunologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Mutação , Proteínas Virais Reguladoras e Acessórias/genética
14.
mBio ; 11(5)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994328

RESUMO

Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) and may serve as a viral reservoir during antiretroviral therapy (ART). Their susceptibility to HIV-1 infection is subject to variations from permissiveness to resistance depending on their origin, tissue localization, and polarization profile. This is in part due to the expression of regulatory microRNAs. Here, we identify two microRNA paralogs, microRNA 103 (miR-103) and miR-107, as regulators of CCR5 expression that are upregulated in noninfected bystander cells of HIV-1-infected-monocyte-derived macrophage (MDM) cultures. Transfection of microRNA 103 mimics in MDMs reduced CCR5 expression levels and inhibited CCR5-dependent HIV-1 entry, whereas the corresponding antagomirs enhanced virus spread in HIV-infected MDMs. Treatment of MDMs with interleukin-1ß (IL-1ß) enhanced microRNA 103 expression, a condition that we found contributed to the reduction of CCR5 mRNA in IL-1ß-exposed MDMs. Interestingly, we show that the induction of miR-103/107 expression is part of a tumor suppressor p53 response triggered by secreted IL-1ß that renders macrophages refractory to HIV-1 entry. In a more physiological context, the levels of microRNAs 103 and 107 were found enriched in tissue-resident colon macrophages of healthy donors and alveolar macrophages of individuals under antiretroviral therapy, conceivably contributing to their relative resistance to HIV-1 infection. Overall, these findings highlight the role of p53 in enforcing proinflammatory antiviral responses in macrophages, at least in part, through miR-103/107-mediated downmodulation of CCR5 expression and HIV-1 entry.IMPORTANCE Macrophages are heterogeneous immune cells that display varying susceptibilities to HIV-1 infection, in part due to the expression of small noncoding microRNAs involved in the posttranscriptional regulation of gene expression and silencing. Here, we identify microRNAs 103 and 107 as important p53-regulated effectors of the antiviral response triggered by the proinflammatory cytokine IL-1ß in macrophages. These microRNAs, which are enriched in colon macrophages of healthy donors and alveolar macrophages of HIV-infected individuals under antiretroviral therapy, act as inhibitors of HIV-1 entry through their capacity to downregulate the CCR5 coreceptor. These results highlight the important role played by miR-103/107 in modulating CCR5 expression and HIV-1 entry in macrophages. They further underscore a distinct function of the tumor suppressor p53 in enforcing proinflammatory antiviral responses in macrophages, thus providing insight into a cellular pathway that could be targeted to limit the establishment of viral reservoirs in these cells.


Assuntos
Interleucina-1beta/genética , MicroRNAs/imunologia , Receptores CCR5/genética , Proteína Supressora de Tumor p53/genética , Internalização do Vírus , Regulação para Baixo , Regulação da Expressão Gênica , Infecções por HIV/virologia , HIV-1 , Humanos , Interleucina-1beta/imunologia , Macrófagos/imunologia , Macrófagos/virologia , MicroRNAs/genética , Receptores CCR5/imunologia , Proteína Supressora de Tumor p53/imunologia
15.
J Pharmacol Exp Ther ; 329(1): 159-68, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19136639

RESUMO

Unlike the widely distributed and preformed B(2) receptors, the bradykinin B(1) receptors exhibit a highly regulated expression and minimal agonist-induced endocytosis. To evaluate the potential usefulness of fluorescent B(1) receptor probes applicable to live cell microscopy and cytofluorometry, combined chemical synthesis and pharmacologic evaluation have been conducted on novel 5(6)-carboxyfluorescein [5(6)CF]-containing peptides. Representative agents are the antagonist B-10376 [5(6)CF-epsilon-aminocaproyl-Lys-Lys-[Hyp(3), CpG(5), D-Tic(7), CpG(8)]des-Arg(9)-bradykinin] and the agonist B-10378 [5(6)CF-epsilon-aminocaproyl-Lys-des-Arg(9)-bradykinin]. B-10376 has a K(i) of 10 to 20 nM to displace [(3)H]Lys-des-Arg(9)-bradykinin from rabbit or human recombinant B(1) receptors expressed in human embryonic kidney (HEK) 293 cells and is a surmountable antagonist in the rabbit aorta contractility assay (pA(2), 7.49). B-10378 was a full agonist at the naturally expressed B(1) receptor (rabbit aorta contraction, calcium transients in human smooth muscle cells) and had a binding competition K(i) of 19 or 89 nM at the recombinant rabbit or human receptor, respectively. Both fluorescent probes can label with specificity human or rabbit B(1) receptors expressed in HEK 293 cells (epifluorescence or confocal microscopy), but the agonist was associated with discontinuous plasma membrane labeling, which coincided with that of a red-emitting caveolin-1 conjugate. Cytofluorometry with B-10376 was applied to recombinant and, in human vascular smooth muscle cells, to naturally expressed B(1) receptors. In all fluorescent applications, the specific labeling was reduced by an excess of a B(1) receptor nonpeptide antagonist. Despite the loss of affinity determined by the introduction of a fluorophore in B(1) receptor agonist or antagonist peptides, the resulting agents allow original applications (imaging in live cells, cytofluorometry).


Assuntos
Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Ligação Competitiva/efeitos dos fármacos , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Corantes Fluorescentes , Humanos , Indicadores e Reagentes , Ligantes , Microscopia de Fluorescência , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Transporte Proteico/efeitos dos fármacos , Coelhos , Receptor B1 da Bradicinina/biossíntese , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/efeitos dos fármacos
16.
J Cell Biol ; 157(7): 1211-22, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12070129

RESUMO

Agonist-induced endocytosis and processing of the G protein-coupled AT1 angiotensin II (Ang II) receptor (AT1R) was studied in HEK 293 cells expressing green fluorescent protein (GFP)- or hemagglutinin epitope-tagged forms of the receptor. After stimulation with Ang II, the receptor and its ligand colocalized with Rab5-GFP and Rab4-GFP in early endosomes, and subsequently with Rab11-GFP in pericentriolar recycling endosomes. Inhibition of phosphatidylinositol (PI) 3-kinase by wortmannin (WT) or LY294002 caused the formation of large endosomal vesicles of heterogeneous Rab composition, containing the ligand-receptor complex in their limiting membranes and in small associated vesicular structures. In contrast to Alexa(R)-transferrin, which was mainly found in small vesicles associated with the outside of large vesicles in WT-treated cells, rhodamine-Ang II was also segregated into small internal vesicles. In cells labeled with 125I-Ang II, WT treatment did not impair the rate of receptor endocytosis, but significantly reduced the initial phase of receptor recycling without affecting its slow component. Similarly, WT inhibited the early, but not the slow, component of the recovery of AT1R at the cell surface after termination of Ang II stimulation. These data indicate that internalized AT1 receptors are processed via vesicles that resemble multivesicular bodies, and recycle to the cell surface by a rapid PI 3-kinase-dependent recycling route, as well as by a slower pathway that is less sensitive to PI 3-kinase inhibitors.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Angiotensina/metabolismo , Androstadienos/farmacologia , Angiotensina II/farmacologia , Biomarcadores , Linhagem Celular , Células Cultivadas , Cromonas/farmacologia , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endocitose , Endossomos/metabolismo , Humanos , Morfolinas/farmacologia , Receptor Tipo 1 de Angiotensina , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transferrina/metabolismo , Wortmanina , Proteínas rab4 de Ligação ao GTP/efeitos dos fármacos , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/efeitos dos fármacos , Proteínas rab5 de Ligação ao GTP/metabolismo
17.
Subcell Biochem ; 47: 174-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18512351

RESUMO

Whereas bacterial pathogens take over the control of their host cell actin cytoskeleton by delivering an array of protein effectors through specialized secretion systems, promastigotes of the protozoan parasite Leishmania donovani rely entirely upon a cell surface glycolipid to achieve this feat. Here, we review recent evidence that L. donovani promastigotes subvert host macrophage actin dynamics during the establishment of infection and we discuss the potential mechanisms involved.


Assuntos
Leishmania donovani/patogenicidade , Fagossomos/fisiologia , Actinas/biossíntese , Animais , Glicoesfingolipídeos/fisiologia , Humanos , Leishmania donovani/fisiologia , Estágios do Ciclo de Vida , Macrófagos/parasitologia , Modelos Biológicos , Fagocitose/fisiologia
18.
Cell Death Differ ; 26(10): 1942-1954, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30683917

RESUMO

HIV-associated neurocognitive disorders (HAND) is a syndrome defined by neurocognitive deficits that are driven by viral neurotoxins, cytokines, free radicals, and proteases expressed in the brain. This neurological disease has also been linked to activation of Protease-Activated Receptors 1 and 2 (PAR1,2). These receptors are highly expressed in the central nervous system and are upregulated in HAND. Secretory basic-amino-acid-specific Proprotein Convertases (PCs), which cleave precursor proteins at basic residues, are also induced in HAND. They are vital for many biological processes including HIV-1 entry into cells. The cytoprotective role of Furin, PC5, and PACE4 has been linked to the presence of a potential PC-cleavage site R41XXXXR46↓ in PAR1. Furthermore, Furin binds PAR1 and both are trapped in the trans-Golgi-network (TGN) as inactive proteins, likely due to the intermediary trafficking role of phospho-Furin acidic cluster sorting protein 1 (PACS1). Nothing is known about PAR2 and its possible recognition by PCs at its putative R31XXXXR36↓ processing site. The present study implicates PACS1 in the retrograde trafficking of PAR1 to the TGN and demonstrates that the cytosolic extreme C-terminal tail of PAR1 contains an acidic phosphorylatable PACS1-sensitive domain. We further show the requirement of Asn47 in PAR1 for its Furin-dependent TGN localization. Our data revealed that Furin is the only convertase that efficiently cleaves PAR2 at Arg36↓. N-glycosylation of PAR2 at Asn30 reduces the efficacy, but enhances selectivity of the Furin cleavage. Finally, in co-cultures comprised of human neuroblastoma SK-N-SH cells (stably expressing PAR1/2 and/or Furin) and HIV-1-infected primary macrophages, we demonstrate that the expression of Furin enhances neuronal cell viability in the context of PAR1- or PAR2-induced neuronal cytotoxicity. The present study provides insights into early stages of HIV-1 induced neuronal injury and the protective role of Furin in neurons co-expressing PAR1 and/or PAR2, as observed in HAND.


Assuntos
Furina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Inflamação/virologia , Transtornos Neurocognitivos/virologia , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Infecções por HIV/virologia , Humanos , Inflamação/metabolismo , Transtornos Neurocognitivos/metabolismo , Transfecção
19.
Mol Biol Cell ; 14(8): 3305-24, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12925765

RESUMO

Desensitization of the chemokine receptors, a large class of G protein-coupled receptors, is mediated in part by agonist-driven receptor endocytosis. However, the exact pathways have not been fully defined. Here we demonstrate that the rate of ligand-induced endocytosis of CCR5 in leukocytes and expression systems is significantly slower than that of CXCR4 and requires prolonged agonist treatment, suggesting that these two receptors use distinct mechanisms. We show that the C-terminal domain of CCR5 is the determinant of its slow endocytosis phenotype. When the C-tail of CXCR4 was exchanged for that of CCR5, the resulting CXCR4-CCR5 (X4-R5) chimera displayed a CCR5-like trafficking phenotype. We found that the palmitoylated cysteine residues in this domain anchor CCR5 to plasma membrane rafts. CXCR4 and a C-terminally truncated CCR5 mutant (CCR5-KRFX) lacking these cysteines are not raft associated and are endocytosed by a clathrin-dependent pathway. Genetic inhibition of clathrin-mediated endocytosis demonstrated that a significant fraction of ligand-occupied CCR5 trafficked by clathrin-independent routes into caveolin-containing vesicular structures. Thus, the palmitoylated C-tail of CCR5 is the major determinant of its raft association and endocytic itineraries, differentiating it from CXCR4 and other chemokine receptors. This novel feature of CCR5 may modulate its signaling potential and could explain its preferential use by HIV for person-to-person transmission of disease.


Assuntos
Endocitose , Leucócitos/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Quimiocinas/metabolismo , Clonagem Molecular , Citometria de Fluxo , Humanos , Leucócitos/citologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores CCR5/agonistas , Receptores CXCR4/agonistas
20.
Viruses ; 10(1)2017 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301198

RESUMO

Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.


Assuntos
Antígenos CD4/genética , Diferenciação Celular , HIV-1/fisiologia , MicroRNAs/genética , Receptores Virais/genética , Células THP-1/virologia , Internalização do Vírus , Antagomirs/farmacologia , Antígenos CD4/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Macrófagos/fisiologia , Macrófagos/virologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Monócitos/fisiologia , Monócitos/virologia , Receptores Virais/metabolismo , Células THP-1/fisiologia , Regulação para Cima/efeitos dos fármacos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA