Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Am Chem Soc ; 146(10): 6796-6805, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421320

RESUMO

Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies, such as networks, might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of nonfrustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(dl-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO), synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers while demonstrating the power of this fractionation technique.

2.
Phys Rev Lett ; 132(15): 158101, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682967

RESUMO

Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials.

3.
Biomacromolecules ; 25(2): 1291-1302, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170593

RESUMO

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.


Assuntos
Celobiose , Cristais Líquidos , Glicolipídeos/química , Cristais Líquidos/química , Varredura Diferencial de Calorimetria , Microscopia
4.
Langmuir ; 39(21): 7258-7267, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37187170

RESUMO

Poloxamers, also known by their trade name, Pluronics, are known to mitigate damage to cellular membranes. However, the mechanism underlying this protection is still unclear. We investigated the effect of poloxamer molar mass, hydrophobicity, and concentration on the mechanical properties of giant unilamellar vesicles, composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, using micropipette aspiration (MPA). Properties including the membrane bending modulus (κ), stretching modulus (K), and toughness are reported. We found that poloxamers tend to decrease K, with an impact largely dictated by their membrane affinity, i.e., both a high molar mass and less hydrophilic poloxamers depress K at lower concentrations. However, a statistically significant effect on κ was not observed. Several poloxamers studied here showed evidence of membrane toughening. Additional pulsed-field gradient NMR measurements provided insight into how polymer binding affinity connects to the trends observed by MPA. This model study provides important insights into how poloxamers interact with lipid membranes to further understanding of how they protect cells from various types of stress. Furthermore, this information may prove useful for the modification of lipid vesicles for other applications, including use in drug delivery or as nanoreactors.


Assuntos
Bicamadas Lipídicas , Poloxâmero , Bicamadas Lipídicas/química , Poloxâmero/química , Membrana Celular , Sistemas de Liberação de Medicamentos , Elasticidade
5.
Langmuir ; 39(40): 14263-14274, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37755825

RESUMO

Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases. This motivated an investigation of poloxamer-lipid bilayer interactions as a function of temperature and thermal history. In this study, we applied pulsed-field-gradient NMR spectroscopy to measure the fraction of chains bound to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes between 10 and 50 °C. We measured an (11 ± 3)-fold increase in binding affinity at 37 °C relative to 27 °C. Moreover, following incubation at 37 °C, it takes weeks for the system to re-equilibrate at 25 °C. Such slow desorption kinetics suggests that at elevated temperatures polymer chains can pass through the bilayer and access the interior of the liposomes, a mechanism that is inaccessible at lower temperatures. We propose a molecular mechanism to explain this effect, which could have important ramifications on the cellular distribution of ABPs and could be exploited to modulate the mechanical and surface properties of liposomes and cell membranes.


Assuntos
Lipossomos , Poloxâmero , Poloxâmero/química , Polietilenoglicóis/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Água/química
6.
Biomacromolecules ; 24(1): 449-461, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563027

RESUMO

Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions. In this work, we utilized a versatile synthetic platform to create novel bottlebrush analogues to poloxamers and then employed pulsed-field-gradient NMR and an in vitro osmotic stress assay to explore the effect of bottlebrush architectural parameters on binding to, and protection of, model phospholipid bilayers. We found that the binding affinity of a bottlebrush poloxamer (BBP) (B-E1043P515, Mn ≈ 26 kDa) is about 3 times higher than a linear poloxamer with a similar composition and number of PPO units (L-E93P54E93, Mn ≈ 11 kDa). Furthermore, BBP binding is sensitive to overall molecular weight, side-chain length, and architecture (statistical versus block). Finally, all tested BBPs exhibit a protective effect on cell membranes under stress at sub-µM concentrations. As the factors controlling membrane affinity and protection efficacy of bottlebrush poloxamers are not understood, these results provide important insight into how they adhere to and stabilize a lipid bilayer surface.


Assuntos
Bicamadas Lipídicas , Poloxâmero , Poloxâmero/química , Bicamadas Lipídicas/química , Lipossomos , Polímeros/química , Polietilenoglicóis/química
7.
Soft Matter ; 19(24): 4519-4525, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283286

RESUMO

The phase behavior of ternary blends composed of two homopolymers (A, B) and their corresponding diblock copolymer (A-B) has been widely studied, with emphasis on the volumetrically symmetric isopleth and the formation of bicontinuous microemulsions. However, almost all the previous studies employed linear polymers, and little is known about the impact of polymer architecture on the phase behavior of such ternary blends. Here, we report the self-assembly of three sets of ternary blends of polystyrene (PS) and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMAn), with different lengths of oligo(ethylene glycol) side chains n. Small-angle X-ray scattering was used to probe the phase behavior at different compositions and temperatures. The order-to-disorder transition temperature was found to be impacted by the side chain length. It was also observed that longer side chains lead to poorer miscibility of homopolymers in the corresponding block, resulting in a more "dry-brush" like swelling behavior.

8.
J Am Chem Soc ; 144(47): 21719-21727, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36379011

RESUMO

Block polymer self-assembly provides a versatile platform for creating useful materials endowed with three-dimensional periodic network morphologies that support orthogonal physical properties such as high ionic conductivity and a high elastic modulus. However, coil configurations limit conventional linear block polymers to finite ordered network dimensions, which are further restricted by slow self-assembly kinetics at high molecular weights. A bottlebrush architecture can circumvent both shortcomings owing to extended backbone configurations due to side chain crowding and molecular dynamics substantially free of chain entanglements. However, until now, network morphologies have not been reported in AB bottlebrush block copolymers, notwithstanding favorable mean-field predictions. We explored the phase behavior by small-angle X-ray scattering of 133 poly(ethylene-alt-propylene)-b-polystyrene (PEP-PS) diblock and PEP-PS-PEO triblock bottlebrush copolymers prepared by ring-opening metathesis polymerization (ROMP) of norbornene-functionalized poly(ethylene-alt-propylene) (PEP), poly(styrene) (PS), and poly(ethylene oxide) (PEO) macromonomers with total backbone degrees of polymerization Nbb between 20 and 40. The PEP-PS diblocks exhibited only cylindrical and lamellar morphologies over the composition range of ca. 30-70%. However, addition of variable-length bottlebrush PEO blocks to diblocks containing 30-50% PS led to the formation of a substantial core-shell double gyroid (GYR) phase window containing 20 bottlebrush triblock specimens, which is the focus of this report. Encouragingly, the GYR unit cell dimensions increased as d ∼ Nbb0.92, portending the ability to access larger network dimensions than previously obtained with linear AB or ABC block polymers. This work highlights extraordinary opportunities associated with applying facile ROMP chemistry to multiblock bottlebrush polymers.

9.
Biomacromolecules ; 23(3): 1433-1442, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35132851

RESUMO

Poloxamers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) segments can protect cell membranes against various forms of stress. We investigated the role of the hydrophobic block chemistry on polymer/membrane binding and cell membrane protection by comparing a series of poly(butylene oxide)-b-PEO (PBO-b-PEO) copolymers to poloxamer analogues, using a combination of pulsed-field-gradient (PFG) NMR experiments and a lactate dehydrogenase (LDH) cell assay. We found that the more hydrophobic PBO-b-PEO copolymers bound more significantly to model liposomes composed of 1-palmitol-2-oleoyl-glycero-3-phosphocholine (POPC) compared to poly(propylene oxide) (PPO)/PEO copolymers. However, both classes of polymers performed similarly when compared by an LDH assay. These results present an important comparison between polymers with similar structures but with different binding affinities. They also provide mechanistic insight as enhanced polymer/lipid membrane binding did not directly translate to increased cell protection in the LDH assay, and therefore, additional factors need to be considered when trying to achieve greater membrane protection efficacy.


Assuntos
Óxido de Etileno , Polietilenoglicóis , Alcenos , Citoproteção , Compostos de Epóxi , Lipídeos , Óxidos , Poloxâmero , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia , Propilenoglicóis/química
10.
J Am Chem Soc ; 143(20): 7748-7758, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988984

RESUMO

The effect of molecular weight (M) on the fragmentation kinetics of micelles formed by 1,2-polybutadiene-block-poly(ethylene oxide) (PB-PEO) copolymers was studied in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A series of six samples, with total M ranging from 104 to 105 g mol-1 and nearly constant composition (fPEO ≈ 0.4), were examined; all six formed spherical micelles with PEO coronas. Nonequilibrium PB-PEO micelles were prepared by direct dissolution, a process that systematically produces nanoparticles with mean aggregation numbers more than twice the equilibrium values. When subjected to high temperature annealing (170 °C), the average micelle radius was found to decrease substantially, as determined by temperature-jump dynamic light scattering (T-jump DLS) and time-resolved small-angle X-ray scattering (TR-SAXS). The characteristic fragmentation times (τ) were found to increase strongly with increasing degree of polymerization N, as τ ∼ N1.8. This result compares favorably with the prediction of a previously untested model.

11.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443438

RESUMO

Polymer/ionic liquid systems are being increasingly explored, yet those exhibiting lower critical solution temperature (LCST) phase behavior remain poorly understood. Poly(benzyl methacrylate) in certain ionic liquids constitute unusual LCST systems, in that the second virial coefficient (A2) in dilute solutions has recently been shown to be positive, indicative of good solvent behavior, even above phase separation temperatures, where A2 < 0 is expected. In this work, we describe the LCST phase behavior of poly(benzyl methacrylate) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide for three different molecular weights (32, 63, and 76 kg/mol) in concentrated solutions (5-40% by weight). Turbidimetry measurements reveal a strong concentration dependence to the phase boundaries, yet the molecular weight is shown to have no influence. The critical compositions of these systems are not accessed, and must therefore lie above 40 wt% polymer, far from the values (ca. 10%) anticipated by Flory-Huggins theory. The proximity of the experimental cloud point to the coexistence curve (binodal) and the thermo-reversibility of the phase transitions, are also confirmed at various heating and cooling rates.

12.
J Am Chem Soc ; 142(20): 9352-9362, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32392052

RESUMO

Using molecular dynamics simulations and transferable force fields, we designed a series of symmetric triblock amphiphiles (or high-χ block oligomers) comprising incompatible sugar-based (A) and hydrocarbon (B) blocks that can self-assemble into ordered nanostructures with sub-1 nm domains and full domain pitches as small as 1.2 nm. Depending on the chain length and block sequence, the ordered morphologies include lamellae, perforated lamellae, and hexagonally perforated lamellae. The self-assembly of these amphiphiles bears some similarities, but also some differences, to those formed by symmetric triblock polymers. In lamellae formed by ABA amphiphiles, the fraction of B blocks "bridging" adjacent polar domains is nearly unity, much higher than that found for symmetric triblock polymers, and the bridging molecules adopt elongated conformations. In contrast, "looping" conformations are prevalent for A blocks of BAB amphiphiles. Above the order-disorder transition temperature, the disordered states are locally well-segregated yet the B blocks of ABA amphiphiles are significantly less stretched than in the lamellar phases. Analysis of both hydrogen-bonded and nonpolar clusters reveals the bicontinuous nature of these network phases. This simulation study furnishes detailed insights into structure-property relationships for mesophase formation on the 1 nm length scale that will aid further miniaturization for numerous applications.

13.
Anal Chem ; 92(11): 7621-7629, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32351106

RESUMO

Numerous ion-selective and reference electrodes have been developed over the years. Following the need for point-of-care and wearable sensors, designs have transitioned recently from bulky devices with an aqueous inner filling solution to planarizable solid-contact electrodes. However, unless the polymeric sensing and reference membranes are held in place mechanically, delamination of these membranes from the underlying solid to which they adhere physically limits sensor lifetime. Even minor external mechanical stress or thermal expansion can result in membrane delamination and, thereby, device failure. To address this problem, we designed a sensing platform based on poly(ethylene terephthalate) substrates to which polyacrylate-based sensing and polymethacrylate-based reference membranes are attached covalently. Ion-selective membranes with covalently attached or freely dissolved ionophore- and ionic-liquid-doped reference membranes can be directly photopolymerized onto surface-functionalized poly(ethylene terephthalate), resulting in the formation of covalent bonds between the underlying substrate and the attached membranes. H+- and K+-selective electrodes thus prepared exhibit highly selective responses with the theoretically expected (Nernstian) response slope, and reference electrodes provide sample-independent reference potentials over a wide range of electrolyte concentrations. Even repeated mechanical stress does not result in the delamination of the sensing and reference membranes, leading to electrodes with much improved long-term performance. As demonstrated for poly(ethylene-co-cyclohexane-1,4-dimethanol terephthalate) (PETG), this approach may be expanded to a wide range of other polyester, polyamide, and polyurethane platform materials. Covalent attachment of sensing and reference membranes to an inert plastic platform material is a very promising approach to a problem that has plagued the field of ion-selective electrodes and field effect transistors for over 30 years.

14.
Langmuir ; 36(13): 3393-3403, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216370

RESUMO

Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.


Assuntos
Bicamadas Lipídicas , Propilenoglicóis , Polietilenoglicóis , Polímeros
15.
Nano Lett ; 19(7): 4458-4462, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31188012

RESUMO

Efforts to create block-polymer-based templates with ultrasmall domain sizes has stimulated integrated experimental and theoretical work in an effort to design and prepare self-assembled systems that can achieve unprecedented domain sizes. We recently reported the utilization of molecular dynamics simulations with transferable force fields to identify amphiphilic oligomers capable of self-assembling into ordered layered and cylindrical morphologies with sub-3 nm domain sizes. Motivated by these predictions, we prepared a sugar-based amphiphile with a hydrocarbon tail that shows thermotropic self-assembly to give a lamellar mesophase with a 3.5 nm pitch and sub-2 nm nanodomains above the melting temperature and below the liquid-crystalline clearing temperature. Complementary atomistic simulations of the molecular assemblies gave morphologies and spacings that were in near-perfect agreement with the experimental results. The effective combination of molecular design, simulation, synthesis, and structural characterization demonstrates the power of this integrated approach for next-generation templating technologies.

16.
J Am Chem Soc ; 141(40): 15804-15817, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553590

RESUMO

Cellular delivery of biomacromolecules is vital to medical research and therapeutic development. Cationic polymers are promising and affordable candidate vehicles for these precious payloads. However, the impact of polycation architecture and solution assembly on the biological mechanisms and efficacy of these vehicles has not been clearly defined. In this study, four polymers containing the same cationic poly(2-(dimethylamino)ethyl methacrylate) (D) block but placed in different architectures have been synthesized, characterized, and compared for cargo binding and biological performance. The D homopolymer and its diblock copolymer poly(ethylene glycol)-block-poly(2-(dimethylamino) ethyl methacrylate) (OD) readily encapsulate pDNA to form polyplexes. Two amphiphilic block polymer variants, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (ODB), self-assemble into micelles, which template pDNA winding around the cationic corona to form micelleplexes. Micelleplexes were found to have superior delivery efficiency compared to polyplexes and detailed physicochemical and biological characterizations were performed to pinpoint the mechanisms by testing hypotheses related to cellular internalization, intracellular trafficking, and pDNA unpackaging. For the first time, we find that the higher concentration of amines housed in micelleplexes stimulates both cellular internalization and potential endosomal escape, and the physical motif of pDNA winding into micelleplexes, reminiscent of DNA compaction by histones in chromatin, preserves the pDNA secondary structure in its native B form. This likely allows greater payload accessibility for protein expression with micelleplexes compared to polyplexes, which tightly condense pDNA and significantly distort its helicity. This work provides important guidance for the design of successful biomolecular delivery systems via optimizing the physicochemical properties.


Assuntos
Empacotamento do DNA/genética , DNA/genética , Técnicas de Transferência de Genes , Metacrilatos/química , Nylons/química , Polieletrólitos/química , Polietilenoglicóis/química , Sobrevivência Celular , Endocitose/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Micelas , Estrutura Molecular , Polieletrólitos/toxicidade , Transfecção
17.
Anal Chem ; 91(12): 7698-7704, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31120239

RESUMO

The Henderson equation is usually used to calculate liquid-junction potentials between miscible electrolyte solutions. However, the potentials of reference electrodes that comprise an electrolyte-filled nanoporous glass frit may also be affected by charge screening. As reported previously, when the Debye length approaches or surpasses the glass pore diameter, reference potentials depend on the composition of the bridge electrolyte, the pore size of the frit, and the concentration of electrolyte in the sample. We report here that stirring of samples may alter the reference potential as it affects the electrolyte concentration in the section of the nanoporous glass frit that is facing the sample solution. When the flow rate of bridge electrolyte into the sample is small, convective mass transport of sample into the nanoporous frit occurs. The depth of penetration into the frit is only a few nanometers but, despite the use of concentrated salt bridges, this is enough to affect the extent of electrostatic screening when samples of low ionic strength are measured. Mixing of sample and salt bridge solutions-and in particular penetration of sample components into the frit-was optically monitored by observation of a deeply colored Fe[(SCN)(H2O)5]2+ complex that formed in situ exclusively in the region where the sample and salt bridge mixed. Importantly, because flow through nanoporous frits is very slow, mass transport through these frits is dominated by diffusion. Consequently, over as little as 1 h, reference electrode frits with low flow rates become contaminated with sample components and undergo depletion of electrolyte within the frit to a depth of several millimeters, which can negatively affect subsequent experiments.

18.
Mol Pharm ; 16(10): 4089-4103, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31487183

RESUMO

Many pharmaceutical drugs in the marketplace and discovery pipeline suffer from poor aqueous solubility, thereby limiting their effectiveness for oral delivery. The use of an amorphous solid dispersion (ASD), a mixture of an active pharmaceutical ingredient and a polymer excipient, greatly enhances the aqueous dissolution performance of a drug without the need for chemical modification. Although this method is versatile and scalable, deficient understanding of the interactions between drugs and polymers inhibits ASD rational design. This current Review details recent progress in understanding the mechanisms that control ASD performance. In the solid-state, the use of high-resolution theoretical, computational, and experimental tools resolved the influence of drug/polymer phase behavior and dynamics on stability during storage. During dissolution in aqueous media, novel characterization methods revealed that ASDs can form complex nanostructures, which maintain and improve supersaturation of the drug. The studies discussed here illustrate that nanoscale phenomena, which have been directly observed and quantified, strongly affect the stability and bioavailability of ASD systems, and provide a promising direction for optimizing drug/polymer formulations.


Assuntos
Química Farmacêutica , Composição de Medicamentos , Preparações Farmacêuticas/química , Polímeros/química , Disponibilidade Biológica , Cristalização , Estabilidade de Medicamentos , Excipientes , Humanos , Solubilidade
19.
Langmuir ; 35(22): 7231-7241, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31117745

RESUMO

Interactions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm. The fraction of polymer bound to the liposomes was extracted from NMR data on the basis of the very different mobilities of the bound and free polymers in aqueous solution. Cholesterol concentration was manipulated by varying the molar percentage of this sterol in the POPC bilayer preparation. The membrane curvature was varied by adjusting the liposome size through a conventional pore extrusion technique. Although the PPO content significantly influences the overall amount of block copolymer adsorbed to the liposome, we found that polymer binding decreases with increasing cholesterol concentration in a universal fashion, with the fraction of bound polymer dropping 10-fold between 0 and 30 mol % cholesterol relative to the total content of POPC and cholesterol. Increasing the bilayer curvature (decreasing the radius of the liposome) in the absence of cholesterol increases polymer binding between 2- and 4-fold over the range of liposome sizes studied. These results demonstrate that cholesterol plays a dominant role, and bilayer curvature has a less significant impact as the curvature decreases, on polymer-membrane association.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Polímeros/química , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/química , Propilenoglicóis/química
20.
J Am Chem Soc ; 140(35): 11101-11111, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30137979

RESUMO

Compaction of DNA by oppositely charged nanoparticles is a fundamental phenomenon in nature and of great interest to developing therapeutics. In addition, the ability to orthogonally control the composition and structure of interpolyelectrolyte complexes is needed to develop materials for diverse applications. Herein, we systematically investigate the complexation of plasmid DNA and polymeric cationic AB and ABC micelles to explore the influence of micelle outer nonionic corona length on the colloidal stability, size, composition, and structure of the resulting "micelleplexes". The micelles were self-assembled from amphiphilic block polymers, poly(ethylene glycol)- block-poly((2-dimethylamino)ethyl methacrylate)- block-poly( n-butyl methacrylate) (PEG- b-PDMAEMA- b-PnBMA), and PDMAEMA- b-PnBMA with the same Mn of PDMAEMA. These spherical micelles have similar hydrodynamic radii and core sizes, but the Mn of the outer PEG block ranged from 0 to 10 kDa. The colloidal stability of micelleplexes as a function of stoichiometric charge ratio was assessed by turbidimetric titration and was found to dramatically improve with the addition of an outer PEG corona, even as short as 2 kDa. With the use of a combination of dynamic and static light scattering, ζ-potential, and cryogenic transmission electron microscopy, it was found that the size, composition, and structure of micelleplexes are closely correlated with the Mn of the PEG block. Indeed, these micelleplexes were found to adopt beads-on-a-string morphologies that resemble the general structure of chromatin, and the number of micelles per micelleplex systematically decreased with increasing PEG length. These findings demonstrate the power of polycationic micelles to condense DNA into biomimetic structures and provide a mechanistic understanding of nucleic acid complexation and of how micelle architecture affects the properties of micelleplexes, while offering an appealing strategy to control the properties of micelleplexes by tuning a single parameter.


Assuntos
DNA/química , Polímeros/química , Coloides/química , Micelas , Estrutura Molecular , Tamanho da Partícula , Plasmídeos , Polímeros/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA