Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 65(6): 1491-1511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687769

RESUMO

Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.


Assuntos
Epilepsia , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Epilepsia/genética , Animais , Encéfalo/metabolismo
2.
Nurs Res ; 72(4): 326-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988482

RESUMO

BACKGROUND: Acute ischemic stroke is one of the leading causes of death and disability globally. Recent advances in omics methodology enable lipidomic profiling, which may provide knowledge of the underlying pathology of acute ischemic stroke and its associated outcomes. OBJECTIVE: This study aims to examine the longer-term relationships between symptoms and outcomes following acute ischemic stroke and the underlying lipidomic signatures over 6 months during recovery between acute ischemic stroke patients who received reperfusion therapies and those who did not. METHODS: This prospective cohort study will enroll 104 participants post-acute ischemic stroke in two groups based on their receipt of reperfusion therapy (Group 1) or not (Group 2; n = 52/group). Peripheral plasma samples will be collected from both groups for lipidomic analysis over 6 months. Arterial blood samples will be collected during the procedure for those receiving reperfusion. Self-reported symptoms and outcome data will be collected from both groups. DISCUSSION: We will compare and examine the associations among plasma lipidomic biomarkers and symptoms and cognitive, functional, and health-related quality of life outcomes over 6 months between acute ischemic stroke patients who did and did not receive reperfusion intervention.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/terapia , AVC Isquêmico/terapia , AVC Isquêmico/complicações , Isquemia Encefálica/terapia , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico , Estudos Prospectivos , Qualidade de Vida , Lipidômica , Resultado do Tratamento , Estudos Observacionais como Assunto
3.
Epilepsy Behav ; 114(Pt A): 107652, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309429

RESUMO

INTRODUCTION: Epilepsy is a debilitating neurological condition characterized by spontaneous seizures as well as significant comorbid behavioral abnormalities. In addition to seizures, epileptic patients exhibit interictal spikes far more frequently than seizures, often, but not always observed in the same brain areas. The exact relationship between spiking and seizures as well as their respective effects on behavior are not well understood. In fact, spiking without overt seizures is seen in various psychiatric conditions including attention-deficit hyperactivity disorder. METHODS: In order to study the effects of spiking and seizures on behavior in an epileptic animal model, we used long-term video-electroencephalography recordings at six cortical recording sites together with behavioral activity monitoring. Animals received unilateral injections of tetanus toxin into either the somatosensory or motor cortex. RESULTS: Somatosensory cortex-injected animals developed progressive spiking ipsilateral to the injection site, while those receiving the injection into the motor cortex developed mostly contralateral spiking and spontaneous seizures. Animals with spiking but no seizures displayed a hyperactive phenotype, while animals with both spiking and seizures displayed a hypoactive phenotype. Not all spikes were equivalent as spike location strongly correlated with distinct locomotor behaviors including ambulatory distance, vertical movements, and rotatory movement. CONCLUSIONS: Together, our results demonstrate relationships between brain region-specific spiking, seizures, and behaviors in rodents that could translate into a better understanding for patients with epileptic behavioral comorbidities and other neuropsychiatric disorders.


Assuntos
Epilepsia , Animais , Encéfalo , Eletroencefalografia , Epilepsia/complicações , Humanos , Convulsões/induzido quimicamente , Córtex Somatossensorial
4.
J Neuroinflammation ; 17(1): 175, 2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32505190

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease affecting the neuromuscular system. While there have been a number of important genetic discoveries, there are no therapeutics capable of stopping its insidious progression. Lessons from clinical histories reveal that ALS can start focally at a single limb, but then segmentally spread up and down the spinal cord as well as in the motor cortex and cortex of frontal and temporal lobes until respiratory muscles fail. With or without a clear genetic etiology, often there is no explanation as to why it starts in one region of the body versus another. Similarly, once the disease starts the mechanisms by which the neurodegenerative process spreads are not known. Here, we summarize recent work in animal models that support the hypothesis that critical environmental contributions, such as a nerve injury, can initiate the disease process. We also propose that pathological axoglial signaling by the glial growth factor neuregulin-1 leads to the slow propagation of neuroinflammation resulting in neurodegeneration up and down the spinal cord and that locally applied drugs that block neuregulin-1 signaling could slow or halt the spread of disease.


Assuntos
Esclerose Lateral Amiotrófica , Progressão da Doença , Interação Gene-Ambiente , Esclerose Lateral Amiotrófica/genética , Animais , Humanos
5.
Epilepsy Behav ; 111: 107228, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599431

RESUMO

PURPOSE: People with epilepsy (PWE) come from a wide variety of social backgrounds and educational skillsets, making self-management (SM) education for improving their condition challenging. Here, we evaluated whether a mobile technology-based personalized epilepsy SM education intervention, PAUSE to Learn Your Epilepsy (PAUSE), improves SM measures such as self-efficacy, epilepsy SM behaviors, epilepsy outcome expectations, quality of life (QOL), and personal impact of epilepsy in adults with epilepsy. METHODS: Recruitment for the PAUSE study occurred from October 2015 to March 2019. Ninety-one PWE were educated using an Internet-enabled computer tablet application that downloads custom, patient-specific educational programs from Epilepsy.com. Validated self-reported questionnaires were used for outcome measures. Participants were assessed at baseline (T0), the first follow-up at completion of the PWE-paced 8-12-week SM education intervention (T1), and the second follow-up at least 3 months after the first follow-up (T2). Multiple linear regression was used to assess within-subject significant changes in outcome measures between these time points. RESULTS: The study population was diverse and included individuals with a wide variety of SM educational needs and abilities. The median time for the first follow-up assessment (T1) was approximately 4 months following the baseline (T0) and 8 months following baseline for the second follow-up assessment (T2). Participants showed significant improvement in all SM behaviors, self-efficacy, outcome expectancy, QOL, and personal impact of epilepsy measures from T0 to T1. Participants who scored lower at baseline tended to show greater improvement at T1. Similarly, results showed that participant improvement was sustained in the majority of SM measures from T1 to T2. CONCLUSION: This study demonstrated that a mobile technology-based personalized SM intervention is feasible to implement. The results provide evidence that epilepsy SM behavior and practices, QOL, outcome expectation for epilepsy treatment and management, self-efficacy, and outcome expectation and impact of epilepsy significantly improve following a personalized SM education intervention. This underscores a greater need for a pragmatic trial to test the effectiveness of personalized SM education, such as PAUSE to Learn Your Epilepsy, in broader settings specifically for the unique needs of the hard-to-reach and hard-to-treat population of PWE.


Assuntos
Escolaridade , Epilepsia/psicologia , Qualidade de Vida/psicologia , Autogestão/psicologia , Classe Social , Telemedicina/métodos , Adulto , Epilepsia/terapia , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Autoeficácia , Autogestão/métodos , Inquéritos e Questionários
6.
Neurobiol Dis ; 124: 469-478, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594811

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is poorly understood with no effective therapeutics. One long entertained observation is that ALS may be precipitated focally by nerve injury. Many patients with ALS are athletes or veterans, and some have suffered nerve injuries at the site where ALS first presents. Here we explore how a genetic SOD1 mutation alters the inflammatory response and affects functional recovery after an environmental insult in a rat model. METHODS: Unilateral sciatic nerve crush injuries were performed in SOD1 G93A rats prior to disease symptom onset. Functional recovery was compared between injured wild-type littermates and uninjured SOD1 rats. Spinal cord tissues were analyzed quantitatively for SOD1 expression, glial reactivity, and motor neuron synaptic integrity. RESULTS: Injured SOD1 rats failed to recover and showed hastened functional decline with decreased survival. Injury induced extracellular SOD1 expression was associated with heightened, prolonged microglial and astrogial activation in the ventral horn. This inflammatory response spread to uninjured motor neuron pools and was associated with increased motor neuron synaptic loss. DISCUSSION: This study identified a relationship between genetic and environmental contributions to disease onset and progression in ALS. The findings suggest that injury induced SOD1 mutant protein induces a heightened and prolonged inflammatory response resulting in motor neuron degeneration through synaptic loss. Once initiated, this process spreads to adjacent motor neurons leading to contiguous spread of the disease. Treatments that suppress this heightened glial response could slow disease progression in ALS patients with focal sites of disease onset. SIGNIFICANCE STATEMENT: The contribution of environmental factors such as peripheral nerve insults in ALS is not well understood. Here we examined the effect of a single sciatic nerve injury in SOD1 (G93A) rats to explore the contribution of this environmental insult on disease onset and progression. After the injury, SOD1 animals failed to recover and had a more rapid functional decline. Histopathologically, SOD1 animals had heightened SOD1 expression, microglial and astroglial responses, and a reduction of motor neuron innervation. Taken together, these results provide a plausible mechanism of how the SOD1 mutated protein promotes an abnormal response to injury that leads to neurodegenerative changes in an ALS model that is amenable to therapeutic testing.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Interação Gene-Ambiente , Traumatismos dos Nervos Periféricos/complicações , Recuperação de Função Fisiológica/fisiologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Feminino , Masculino , Neurônios Motores/patologia , Mutação , Neuroglia/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Nervo Isquiático/lesões , Superóxido Dismutase/metabolismo
7.
J Pediatr ; 215: 158-163.e6, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587863

RESUMO

OBJECTIVE: To examine the symptomatology and treatment of Sturge-Weber syndrome (SWS) from a large patient registry to identify common symptoms, clinical outcomes, and areas of unmet clinical need. STUDY DESIGN: An online patient questionnaire was completed by 628 patients with clinically diagnosed SWS and/or a port-wine birthmark over a 19-year period. Statistical analysis focused on seizures as a primary outcome measure, as well as associated neurologic, ophthalmologic, and dermatologic attributes to understand some of the natural history of the disorder. RESULTS: The majority (92%) of patients had a port-wine birthmark, and 60% of the patients had neurologic symptoms, including seizures and stroke-like episodes. Glaucoma was present in 48% of the patients. Other common symptoms included behavioral (46%) and hearing (or vestibular) disorders (24%). Delayed diagnosis of SWS beyond 1 year after presentation of initial symptoms occurred in 16% of the patients, with 68% having clear preexisting comorbidities, especially headaches. Birthmarks on the forehead and scalp were associated with seizures (P < .001), whereas bilaterality of birthmarks was not. Only 49% of patients being treated for epilepsy were free of seizures. CONCLUSIONS: Seizures and glaucoma were the primary drivers for a diagnosis of SWS in patients with delayed diagnosis, and hearing (or vestibular) and behavioral problems were also prevalent. The diagnosis of SWS was delayed when the predominant symptom was headache. Seizure control was quite poor in many patients with SWS. Our findings highlight an important need for detailed, longitudinal data to improve our understanding of SWS and develop better treatment strategies for patients with this disorder.


Assuntos
Diagnóstico Tardio , Gerenciamento Clínico , Sistema de Registros , Convulsões/etiologia , Síndrome de Sturge-Weber/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Seguimentos , Previsões , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Convulsões/terapia , Síndrome de Sturge-Weber/complicações , Síndrome de Sturge-Weber/diagnóstico , Inquéritos e Questionários , Estados Unidos/epidemiologia , Adulto Jovem
8.
Epilepsy Behav ; 98(Pt A): 258-265, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31398690

RESUMO

PURPOSE: People with epilepsy (PWE) from underserved populations face significant barriers to epilepsy management and therefore may lack knowledge about epilepsy and self-management (SM) of epilepsy. This paper evaluates SM practices, self-efficacy, outcome expectancy, quality of life, and personal impact of epilepsy in PWE from underserved populations as compared with all PWE. METHODS: Recruitment for the Managing Epilepsy Well (MEW) Network PAUSE to Learn Your Epilepsy study occurred from October 2015 to March 2019. Participants were assessed at baseline; after SM education intervention; and 6-, 9-, and 15-month postbaseline assessment. Baseline data from 112 PWE were analyzed for this report. RESULTS: Study population was diverse: 63% were women, 47.3% were non-Hispanic black, 24.1% were Hispanic, and 57.4% had public healthcare coverage. Participants on average had epilepsy for 14 years, and 49.1% reported at least one seizure within the past month, but only 27% reported having used a seizure diary or calendar for seizure tracking. Self-management practices & behaviors were significantly lower among PWE from underserved populations than all PWE, though self-efficacy among PWE from underserved populations was significantly higher. CONCLUSION: This study identifies the unique epilepsy SM needs of PWE from underserved populations. We discuss the need for a personalized approach for developing SM skills and behaviors among these PWE.


Assuntos
Epilepsia/psicologia , Medicina de Precisão/psicologia , Qualidade de Vida/psicologia , Autoeficácia , Autogestão/psicologia , Populações Vulneráveis/psicologia , Adolescente , Adulto , Idoso , Epilepsia/economia , Epilepsia/terapia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão/economia , Medicina de Precisão/métodos , Autogestão/economia , Autogestão/métodos , Adulto Jovem
9.
Neurobiol Dis ; 111: 118-126, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29278738

RESUMO

There are no effective treatments to slow disease progression in ALS. We previously reported that neuregulin (NRG) receptors are constitutively activated on microglia in the ventral horns in both ALS patients and SOD1 mice and in the corticospinal tracts of ALS patients, and that NRG receptor activation occurs prior to significant clinical disease onset in SOD1 mice. Here, we hypothesize that blocking NRG signaling on microglia would slow disease progression in SOD1 mice using a targeted NRG antagonist (HBD-S-H4). Recombinant HBD-S-H4 directly delivered into the central nervous system (CNS) through implanted intracerebroventricular cannulas showed no signs of toxicity and significantly inhibited NRG receptor activation on microglia resulting in reduced microglial activation and motor neuron loss. The treatment also resulted in a delay in disease onset and an increase in survival. The therapeutic effect was dose-dependent that varied as a function of genetic background in two different strains of SOD1 mice. As a complementary drug delivery approach, transgenic mice expressing HBD-S-H4 driven by an astrocytic promoter (GFAP) had slower disease progression in a dose dependent manner, based on the level of HBD-S-H4 expression. These studies provide mechanistic insights into how NRG signaling on microglia may lead to disease progression and demonstrate the utility of a humanized fusion protein that blocks NRG as a novel therapeutic for human ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurregulinas/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Injeções Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurregulinas/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
10.
Dev Dyn ; 246(5): 368-380, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28245533

RESUMO

BACKGROUND: Neuromuscular junction (NMJ) development is a multistep process mediated by coordinated interactions between the nerve terminal, target muscle, and perisynaptic Schwann cell that require constant back-and-forth communication. Retrograde and anterograde growth and differentiation factors have been postulated to participate in this communication. While neuregulin1 (NRG1) has been shown to be potent anterograde signal that activates acetylcholine receptor (AChR) transcription and clustering in vitro, its roles in NMJ development in vivo remain elusive. RESULTS: Using the model of chicken embryo, we measured the effects of NRG1 signaling during NMJ development in ovo using quantitative, sequential measures of AChR cluster size and density, pre- and postsynaptic apposition, and the alignment of perisynaptic Schwann cells. Using in ovo electroporation at early stages and a targeted soluble neuregulin antagonist through all developmental stages, we found soluble NRG1 regulates AChR cluster density and size at the earliest stage prior to nerve-AChR cluster contact. Once the nerve contacts with muscle AChRs, NRG1 has pronounced effects on presynaptic specialization and on the alignment of perisynaptic Schwann cells at endplates. CONCLUSION: These findings suggest that, while NRG1 may not be critical for overall development, it appears to be important in fine-tuning pre-, post-, and perisynaptic development of the NMJ. Developmental Dynamics 246:368-380, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas Aviárias/fisiologia , Músculos/inervação , Neuregulina-1/fisiologia , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Embrião de Galinha , Sinapses Elétricas , Junção Neuromuscular/embriologia , Receptores Colinérgicos/metabolismo , Células de Schwann/citologia , Transdução de Sinais
11.
Epilepsia ; 58(9): 1626-1636, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714074

RESUMO

OBJECTIVE: This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. METHODS: We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. RESULTS: We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. SIGNIFICANCE: Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy.


Assuntos
Epilepsia/metabolismo , Metabolômica , Adolescente , Biomarcadores , Encéfalo/metabolismo , Criança , Pré-Escolar , Colina/metabolismo , Creatina/metabolismo , Epilepsia/genética , Feminino , Marcadores Genéticos , Humanos , Lactente , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fosfocreatina/metabolismo
12.
Epilepsia ; 58(6): 951-961, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28387933

RESUMO

OBJECTIVE: Current medications for patients with epilepsy work in only two of three patients. For those medications that do work, they only suppress seizures. They treat the symptoms, but do not modify the underlying disease, forcing patients to take these drugs with significant side effects, often for the rest of their lives. A major limitation in our ability to advance new therapeutics that permanently prevent, reduce the frequency of, or cure epilepsy comes from a lack of understanding of the disease coupled with a lack of reliable biomarkers that can predict who has or who will get epilepsy. METHODS: The main goal of this report is to present a number of approaches for identifying reliable biomarkers from observing patients with brain disorders that have a high probability of producing epilepsy. RESULTS: A given biomarker, or more likely a profile of biomarkers, will have both a quantity and a time course during epileptogenesis that can be used to predict who will get the disease, to confirm epilepsy as a diagnosis, to identify coexisting pathologies, and to monitor the course of treatments. SIGNIFICANCE: Additional studies in patients and animal models could identify common and clinically valuable biomarkers to successfully translate animal studies into new and effective clinical trials.


Assuntos
Anticonvulsivantes/uso terapêutico , Biomarcadores , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/efeitos adversos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/fisiopatologia , Humanos , Fatores de Risco , Pesquisa Translacional Biomédica , Resultado do Tratamento
13.
Brain ; 138(Pt 2): 356-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25516101

RESUMO

Although epilepsy is associated with a variety of abnormalities, exactly why some brain regions produce seizures and others do not is not known. We developed a method to identify cellular changes in human epileptic neocortex using transcriptional clustering. A paired analysis of high and low spiking tissues recorded in vivo from 15 patients predicted 11 cell-specific changes together with their 'cellular interactome'. These predictions were validated histologically revealing millimetre-sized 'microlesions' together with a global increase in vascularity and microglia. Microlesions were easily identified in deeper cortical layers using the neuronal marker NeuN, showed a marked reduction in neuronal processes, and were associated with nearby activation of MAPK/CREB signalling, a marker of epileptic activity, in superficial layers. Microlesions constitute a common, undiscovered layer-specific abnormality of neuronal connectivity in human neocortex that may be responsible for many 'non-lesional' forms of epilepsy. The transcriptional clustering approach used here could be applied more broadly to predict cellular differences in other brain and complex tissue disorders.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Transcrição Gênica , Adolescente , Adulto , Biomarcadores , Criança , Pré-Escolar , Análise por Conglomerados , Eletroencefalografia , Epilepsia/cirurgia , Feminino , Humanos , Lactente , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Neocórtex/patologia , Procedimentos Neurocirúrgicos , RNA/genética , Adulto Jovem
14.
Mol Cell Neurosci ; 68: 73-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25913151

RESUMO

The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios Motores/metabolismo , Neuregulina-1/metabolismo , Isoformas de Proteínas/metabolismo , Fatores Etários , Animais , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Botões de Extremidades/lesões , Neurônios Motores/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuregulina-1/genética , Gravidez , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Fatores de Tempo
15.
Epilepsia ; 56(2): 177-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25534640

RESUMO

OBJECTIVE: To develop a better understanding of mechanisms of seizures and long-term epileptogenesis using neurocysticercosis. METHODS: A workshop was held bringing together experts in epilepsy and epileptogenesis and neurocysticercosis. RESULTS: Human neurocysticercosis and parallel animal models offer a unique opportunity to understand basic mechanisms of seizures. Inflammatory responses to degenerating forms and later-stage calcified parasite granulomas are associated with seizures and epilepsy. Other mechanisms may also be involved in epileptogenesis. SIGNIFICANCE: Naturally occurring brain infections with neurocysticercosis offer a unique opportunity to develop treatments for one of the world's most common causes of epilepsy and for the development of more general antiepileptogenic treatments. Key advantages stem from the time course in which an acute seizure heralds a start of the epileptogenic process, and radiographic changes of calcification and perilesional edema provide biomarkers of a chronic epileptic state.


Assuntos
Epilepsia/etiologia , Neurocisticercose/complicações , Taenia solium/isolamento & purificação , Animais , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Edema Encefálico/diagnóstico , Edema Encefálico/etiologia , Epilepsia/terapia , Granuloma/microbiologia , Humanos , Neurocisticercose/terapia
16.
J Virol ; 87(6): 3018-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269801

RESUMO

Studies on large double-stranded DNA (dsDNA) viruses such as poxviruses have been helpful in identifying a number of viral and cellular growth factors that contribute to our broad understanding of virus-host interaction. Orthopoxviruses and leporipoxviruses are among the most studied viruses in this aspect. However, tanapoxvirus (TPV), a member of the genus Yatapoxvirus, still remains largely unexplored, as the only known hosts for this virus are humans and monkeys. Here, we describe the initial characterization of an epidermal growth factor (EGF)-like growth factor mimicking human neuregulin from TPV, expressed by the TPV-15L gene. Assays using a baculovirus-expressed and tagged TPV-15L protein demonstrated the ability to phosphorylate neuregulin receptors. Neuregulins represent a large family of EGF-like growth factors that play important roles in embryonic endocardium development, Schwann and oligodendrocyte survival and differentiation, localized acetylcholine receptor expression at the neuromuscular junction, and epithelial morphogenesis. Interestingly, certain neuregulin molecules are able to target specific tissues through interactions with heparin sulfate proteoglycans via an immunoglobulin (Ig)-like domain. Analyses of TPV-15L revealed no Ig-like domain, but it retains the ability to bind heparin and phosphorylate neuregulin receptors, providing compelling evidence that TPV-15L is a functional mimetic of neuregulin. TPV-15L knockout virus experiments demonstrate that the virus replicates in human umbilical vein endothelial cells less efficiently than wild-type TPV-Kenya, indicating that this is a nonessential protein for virus viability but can serve a stimulatory role for replication in some cultured cells. However, the precise role of this protein in host-virus interaction still remains to be deduced.


Assuntos
Células Endoteliais/virologia , Neurregulinas/metabolismo , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Replicação Viral , Yatapoxvirus/patogenicidade , Sequência de Aminoácidos , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Dados de Sequência Molecular , Neurregulinas/genética , Alinhamento de Sequência , Proteínas Virais/genética , Fatores de Virulência/genética , Yatapoxvirus/fisiologia
17.
Epilepsia ; 55(8): 1170-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24965021

RESUMO

New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming, and optogenetic manipulations within epileptic networks are progressively unraveling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiologic effects of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy (WONOEP 2013) in Quebec, Canada. Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and has revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knock-down approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type-specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. In addition, genetically encoded cell-type labeling is providing new means to assess the role of the nonneuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and noncoding ribonucleic acid (RNA) involved in modifying gene expression following seizures. In addition, genetically based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient induced pluripotent stem cells and genetically modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Genetics has changed the field of epilepsy research considerably, and is paving the way for better diagnosis and therapies for patients with epilepsy.


Assuntos
Educação/métodos , Epigênese Genética/genética , Epilepsia/diagnóstico , Epilepsia/genética , Hibridização Genética/genética , Animais , Humanos , MicroRNAs/genética
18.
Brain Commun ; 6(3): fcae152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741662

RESUMO

Interictal spikes are electroencephalographic discharges that occur at or near brain regions that produce epileptic seizures. While their role in generating seizures is not well understood, spikes have profound effects on cognition and behaviour, depending on where and when they occur. We previously demonstrated that spiking areas of human neocortex show sustained MAPK activation in superficial cortical Layers I-III and are associated with microlesions in deeper cortical areas characterized by reduced neuronal nuclear protein staining and increased microglial infiltration. Based on these findings, we chose to investigate additional neuronal populations within microlesions, specifically inhibitory interneurons. Additionally, we hypothesized that spiking would be sufficient to induce similar cytoarchitectonic changes within the rat cortex and that inhibition of MAPK signalling, using a MAP2K inhibitor, would not only inhibit spike formation but also reduce these cytoarchitectonic changes and improve behavioural outcomes. To test these hypotheses, we analysed tissue samples from 16 patients with intractable epilepsy who required cortical resections. We also utilized a tetanus toxin-induced animal model of interictal spiking, designed to produce spikes without seizures in male Sprague-Dawley rats. Rats were fitted with epidural electrodes, to permit EEG recording for the duration of the study, and automated algorithms were implemented to quantify spikes. After 6 months, animals were sacrificed to assess the effects of chronic spiking on cortical cytoarchitecture. Here, we show that microlesions may promote excitability due to a significant reduction of inhibitory neurons that could be responsible for promoting interictal spikes in superficial layers. Similarly, we found that the induction of epileptic spikes in the rat model produced analogous changes, including reduced neuronal nuclear protein, calbindin and parvalbumin-positive neurons and increased microglia, suggesting that spikes are sufficient for inducing these cytoarchitectonic changes in humans. Finally, we implicated MAPK signalling as a driving force producing these pathological changes. Using CI-1040 to inhibit MAP2K, both acutely and after spikes developed, resulting in fewer interictal spikes, reduced microglial activation and less inhibitory neuron loss. Treated animals had significantly fewer high-amplitude, short-duration spikes, which correlated with improved spatial memory performance on the Barnes maze. Together, our results provide evidence for a cytoarchitectonic pathogenesis underlying epileptic cortex, which can be ameliorated through both early and delayed MAP2K inhibition. These findings highlight the potential role for CI-1040 as a pharmacological treatment that could prevent the development of epileptic activity and reduce cognitive impairment in both patients with epilepsy and those with non-epileptic spike-associated neurobehavioural disorders.

19.
Sci Rep ; 14(1): 13618, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871799

RESUMO

The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.


Assuntos
Modelos Animais de Doenças , Eletroencefalografia , Microglia , Hemorragia Subaracnóidea , Hemorragia Subaracnóidea/fisiopatologia , Hemorragia Subaracnóidea/complicações , Animais , Microglia/patologia , Microglia/metabolismo , Ratos , Masculino , Fagocitose , Ratos Sprague-Dawley
20.
Neuroradiol J ; : 19714009241260791, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869365

RESUMO

Changes in ventricular size, related to brain edema and hydrocephalus, as well as the extent of hemorrhage are associated with adverse outcomes in patients with subarachnoid hemorrhage (SAH). Frequently, these are measured manually using consecutive non-contrast computed tomography scans. Here, we developed a rule-based approach which incorporates both intensity and spatial normalization and utilizes user-defined thresholds and anatomical templates to segment both lateral ventricle (LV) and SAH blood volumes automatically from CT images. The algorithmic segmentations were evaluated against two expert neuroradiologists on representative slices from 20 admission scans from aneurysmal SAH patients. Previous methods have been developed to automate this time-consuming task, but they lack user feedback and are hard to implement due to large-scale data and complex design processes. Our results using automatic ventricular segmentation aligned well with expert reviewers with a median Dice coefficient of 0.81, AUC of 0.91, sensitivity of 81%, and precision of 84%. Automatic segmentation of SAH blood was most reliable near the base of the brain with a median Dice coefficient of 0.51, an AUC of 0.75, precision of 68%, and sensitivity of 50%. Ultimately, we developed a rule-based method that is easily adaptable through user feedback, generates spatially normalized segmentations that are comparable regardless of brain morphology or acquisition conditions, and automatically segments LV with good overall reliability and basal SAH blood with good precision. Our approach could benefit longitudinal studies in patients with SAH by streamlining assessment of edema and hydrocephalus progression, as well as blood resorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA