Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 18(1): 92, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723395

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

2.
BMC Biol ; 18(1): 37, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264902

RESUMO

Metagenomics studies leverage genomic reference databases to generate discoveries in basic science and translational research. However, current microbial studies use disparate reference databases that lack consistent standards of specimen inclusion, data preparation, taxon labelling and accessibility, hindering their quality and comprehensiveness, and calling for the establishment of recommendations for reference genome database assembly. Here, we analyze existing fungal and bacterial databases and discuss guidelines for the development of a master reference database that promises to improve the quality and quantity of omics research.


Assuntos
Bactérias/genética , Bases de Dados Genéticas/normas , Fungos/genética , Metagenômica/normas , Metagenômica/instrumentação
3.
Front Genet ; 14: 997383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999049

RESUMO

RNA sequencing (RNA-seq) has become an exemplary technology in modern biology and clinical science. Its immense popularity is due in large part to the continuous efforts of the bioinformatics community to develop accurate and scalable computational tools to analyze the enormous amounts of transcriptomic data that it produces. RNA-seq analysis enables genes and their corresponding transcripts to be probed for a variety of purposes, such as detecting novel exons or whole transcripts, assessing expression of genes and alternative transcripts, and studying alternative splicing structure. It can be a challenge, however, to obtain meaningful biological signals from raw RNA-seq data because of the enormous scale of the data as well as the inherent limitations of different sequencing technologies, such as amplification bias or biases of library preparation. The need to overcome these technical challenges has pushed the rapid development of novel computational tools, which have evolved and diversified in accordance with technological advancements, leading to the current myriad of RNA-seq tools. These tools, combined with the diverse computational skill sets of biomedical researchers, help to unlock the full potential of RNA-seq. The purpose of this review is to explain basic concepts in the computational analysis of RNA-seq data and define discipline-specific jargon.

4.
Nutrients ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558359

RESUMO

Fecal microbiota transplantation (FMT) is a promising therapeutic modality for the treatment and prevention of metabolic disease. We previously conducted a double-blind, randomized, placebo-controlled pilot trial of FMT in obese metabolically healthy patients in which we found that FMT enhanced gut bacterial bile acid metabolism and delayed the development of impaired glucose tolerance relative to the placebo control group. Therefore, we conducted a secondary analysis of fecal samples collected from these patients to assess the potential gut microbial species contributing to the effect of FMT to improve metabolic health and increase gut bacterial bile acid metabolism. Fecal samples collected at baseline and after 4 weeks of FMT or placebo treatment underwent shotgun metagenomic analysis. Ultra-high-performance liquid chromatography-mass spectrometry was used to profile fecal bile acids. FMT-enriched bacteria that have been implicated in gut bile acid metabolism included Desulfovibrio fairfieldensis and Clostridium hylemonae. To identify candidate bacteria involved in gut microbial bile acid metabolism, we assessed correlations between bacterial species abundance and bile acid profile, with a focus on bile acid products of gut bacterial metabolism. Bacteroides ovatus and Phocaeicola dorei were positively correlated with unconjugated bile acids. Bifidobacterium adolescentis, Collinsella aerofaciens, and Faecalibacterium prausnitzii were positively correlated with secondary bile acids. Together, these data identify several candidate bacteria that may contribute to the metabolic benefits of FMT and gut bacterial bile acid metabolism that requires further functional validation.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Bactérias/genética , Ácidos e Sais Biliares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA