RESUMO
Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data sets. Trend detection is an effective way to simplify time-varying data and to summarize salient information for visual display and interactive analysis. We propose a geometric model for trend-detection in one-dimensional time-varying data, inspired by topological grouping structures for moving objects in two- or higher-dimensional space. Our model gives provable guarantees on the trends detected and uses three natural parameters: granularity, support-size, and duration. These parameters can be changed on-demand. Our system also supports a variety of selection brushes and a time-sweep to facilitate refined searches and interactive visualization of (sub-)trends. We explore different visual styles and interactions through which trends, their persistence, and evolution can be explored.
RESUMO
Route memory is frequently assessed in virtual environments. These environments can be presented in a fully controlled manner and are easy to use. Yet they lack the physical involvement that participants have when navigating real environments. For some aspects of route memory this may result in reduced performance in virtual environments. We assessed route memory performance in four different environments: real, virtual, virtual with directional information (compass), and hybrid. In the hybrid environment, participants walked the route outside on an open field, while all route information (i.e., path, landmarks) was shown simultaneously on a handheld tablet computer. Results indicate that performance in the real life environment was better than in the virtual conditions for tasks relying on survey knowledge, like pointing to start and end point, and map drawing. Performance in the hybrid condition however, hardly differed from real life performance. Performance in the virtual environment did not benefit from directional information. Given these findings, the hybrid condition may offer the best of both worlds: the performance level is comparable to that of real life for route memory, yet it offers full control of visual input during route learning.