Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Malar J ; 15: 248, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27129434

RESUMO

BACKGROUND: The asexual intra-erythrocytic multiplication of the malaria parasite Plasmodium falciparum is regulated by various molecular mechanisms. In eukaryotic cells, protein kinases are known to play key roles in cell cycle regulation and signaling pathways. The activity of cAMP-dependent protein kinase (PKA) depends on A-kinase anchoring proteins (AKAPs) through protein interactions. While several components of the cAMP dependent pathway-including the PKA catalytic and regulatory subunits-have been characterized in P. falciparum, whether AKAPs are involved in this pathway remains unclear. Here, PfAKAL, an open reading frame of a potential AKAP-like protein in the P. falciparum genome was identified, and its protein partners and putative cellular functions characterized. METHODS: The expression of PfAKAL throughout the erythrocytic cycle of the 3D7 strain was assessed by RT-qPCR and the presence of the corresponding protein by immunofluorescence assays. In order to study physical interactions between PfAKAL and other proteins, pull down experiments were performed using a recombinant PfAKAL protein and parasite protein extracts, or with recombinant proteins. These interactions were also tested by combining biochemical and proteomic approaches. As phosphorylation could be involved in the regulation of protein complexes, both PfAKAL and Pf14-3-3I phosphorylation was studied using a radiolabel kinase activity assay. Finally, to identify a potential function of the protein, PfAKAL sequence was aligned and structurally modeled, revealing a conserved nucleotide-binding pocket; confirmed by qualitative nucleotide binding experiments. RESULTS: PfAKAL is the first AKAP-like protein in P. falciparum to be identified, and shares 23 % sequence identity with the central domain of human AKAP18δ. PfAKAL is expressed in mature asexual stages, merozoites and gametocytes. In spite of homology to AKAP18, biochemical and immunochemical analyses demonstrated that PfAKAL does not interact directly with the P. falciparum PKA regulatory subunit (PfPKA-R), but instead binds and colocalizes with Pf14-3-3I, which in turn interacts with PfPKA-R. In vivo, these different interactions could be regulated by phosphorylation, as PfPKA-R and Pf14-3-3I, but not PfAKAL, are phosphorylated in vitro by PKA. Interestingly, PfAKAL binds nucleotides such as AMP and cAMP, suggesting that this protein may be involved in the AMP-activated protein kinase (AMPK) pathway, or associated with phosphodiesterase activities. CONCLUSION: PfAKAL is an atypical AKAP that shares common features with human AKAP18, such as nucleotides binding. The interaction of PfAKAL with PfPKA-R could be indirectly mediated through a join interaction with Pf14-3-3I. Therefore, PfPKA localization could not depend on PfAKAL, but rather involves other partners.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transdução de Sinais
2.
PLoS One ; 17(1): e0262018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995295

RESUMO

BACKGROUND: Globally distributed with variable prevalence depending on geography, toxoplasmosis is a zoonosis caused by an obligate intracellular protozoan parasite, Toxoplasma gondii. This disease is usually benign but poses a risk for immunocompromised people and for newborns of mothers with a primary infection during pregnancy because of the risk of congenital toxoplasmosis (CT). CT can cause severe damage to fetuses-newborns. To our knowledge, no study has been conducted in sub-Saharan Africa on toxoplasmosis seroprevalence, seroconversion and CT in a large longitudinal cohort and furthermore, no observation has been made of potential relationships with malaria. METHODS: We performed a retrospective toxoplasmosis serological study using available samples from a large cohort of 1,037 pregnant women who were enrolled in a malaria follow-up during the 2008-2010 period in a rural area in Benin. We also used some existing data to investigate potential relationships between the maternal toxoplasmosis serological status and recorded malaria infections. RESULTS: Toxoplasmosis seroprevalence, seroconversion and CT rates were 52.6%, 3.4% and 0.2%, respectively, reflecting the population situation of toxoplasmosis, without targeted medical intervention. The education level influences the toxoplasmosis serological status of women, with women with little or no formal education have greater immunity than others. Surprisingly, toxoplasmosis seropositive pregnant women tended to present lower malaria infection during pregnancy (number) or at delivery (presence) and to have lower IgG levels to Plasmodium falciparum Apical Membrane Antigen 1, compared to toxoplasmosis seronegative women. CONCLUSIONS: The high toxoplasmosis seroprevalence indicates that prevention against this parasite remains important to deploy and must be accessible and understandable to and for all individuals (educated and non-educated). A potential protective role against malaria conferred by a preexisting toxoplasmosis infection needs to be explored more precisely to examine the environmental, parasitic and/or immune aspects.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Complicações Parasitárias na Gravidez/epidemiologia , Gestantes , Toxoplasma/isolamento & purificação , Toxoplasmose/epidemiologia , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Benin/epidemiologia , Feminino , Humanos , Recém-Nascido , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Estudos Retrospectivos , Estudos Soroepidemiológicos , Toxoplasmose/sangue , Toxoplasmose/parasitologia , Adulto Jovem
3.
Front Cell Infect Microbiol ; 11: 637604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842387

RESUMO

The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, ß-adducin, ß-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.


Assuntos
Malária Falciparum , Traço Falciforme , Eritrócitos , Humanos , Plasmodium falciparum , Proteoma , Proteínas de Protozoários
4.
Open Forum Infect Dis ; 6(4): ofz156, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31041352

RESUMO

BACKGROUND: Sickle cell trait (HbAS) confers partial protection against malaria by reducing the adhesion of Plasmodium falciparum-infected erythrocytes to host receptors, but little is known about its potential protection against placental malaria. METHODS: Using flow cytometry, we assessed the recognition of HbAA and HbAS VAR2CSA-expressing infected erythrocytes, by plasma from 159 Beninese pregnant women with either HbAA (normal) or HbAS. Using multivariate linear models adjusted for gravidity, parasite infection at delivery, glucose-6-phosphate dehydrogenase deficiency, and α-thalassemia carriage, we observed significantly reduced cell surface antibody binding of HbAS-infected erythrocytes by plasma from HbAS compared with HbAA women (P < 10-3). RESULTS: The difference in cell surface antibody binding was only observed when infected erythrocytes and plasma were associated according to the same hemoglobin genotype. Similar levels of VAR2CSA-specific antibody were measured by enzyme-linked immunosorbent assay in the 2 groups, suggesting that the altered interaction between VAR2CSA and HbAS women's antibodies could reflect abnormal display of VAR2CSA on HbAS erythrocytes. CONCLUSIONS: Our data stress the need for assessments of erythrocyte disorders such as the sickle cell trait in a population group when studying immunological responses to P falciparum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA