Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 123(8): 1773-1787, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37029826

RESUMO

Maximal strength measured via maximal voluntary contraction is known as a key factor in competitive sports performance as well as injury risk reduction and rehabilitation. Maximal strength and hypertrophy are commonly trained by performing resistance training programs. However, literature shows that long-term, long-lasting static stretching interventions can also produce significant improvements in maximal voluntary contraction. The aim of this study is to compare increases in maximal voluntary contraction, muscle thickness and flexibility after 6 weeks of stretch training and conventional hypertrophy training. Sixty-nine (69) active participants (f = 30, m = 39; age 27.4 ± 4.4 years, height 175.8 ± 2.1 cm, and weight 79.5 ± 5.9 kg) were divided into three groups: IG1 stretched the plantar flexors continuously for one hour per day, IG2 performed hypertrophy training for the plantar flexors (5 × 10-12 reps, three days per week), while CG did not undergo any intervention. Maximal voluntary contraction, muscle thickness, pennation angle and flexibility were the dependent variables. The results of a series of two-way ANOVAs show significant interaction effects (p < 0.05) for maximal voluntary contraction (ƞ2 = 0.143-0.32, p < 0.006), muscle thickness (ƞ2 = 0.11-0.14, p < 0.021), pennation angle (ƞ2 = 0.002-0.08, p = 0.077-0.625) and flexibility (ƞ2 = 0.089-0.21, p < 0.046) for both the stretch and hypertrophy training group without significant differences (p = 0.37-0.99, d = 0.03-0.4) between both intervention groups. Thus, it can be hypothesized that mechanical tension plays a crucial role in improving maximal voluntary contraction and muscle thickness irrespective whether long-lasting stretching or hypertrophy training is used. Results show that for the calf muscle, the use of long-lasting stretching interventions can be deemed an alternative to conventional resistance training if the aim is to increase maximal voluntary contraction, muscle thickness and flexibility. However, the practical application seems to be strongly limited as a weekly stretching duration of up to 7 h a week is opposed by 3 × 15 min of common resistance training.


Assuntos
Exercícios de Alongamento Muscular , Humanos , Adulto Jovem , Adulto , Músculo Esquelético/fisiologia , Perna (Membro) , Hipertrofia , Força Muscular/fisiologia
2.
J Strength Cond Res ; 37(10): 1993-2001, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318350

RESUMO

ABSTRACT: Warneke, K, Keiner, M, Wohlann, T, Lohmann, LH, Schmitt, T, Hillebrecht, M, Brinkmann, A, Hein, A, Wirth, K, and Schiemann, S. Influence of long-lasting static stretching intervention on functional and morphological parameters in the plantar flexors: a randomised controlled trial. J Strength Cond Res 37(10): 1993-2001, 2023-Animal studies show that long-lasting stretching training can lead to significant hypertrophy and increases in maximal strength. Accordingly, previous human studies found significant improvements in maximal voluntary contraction (MVC), flexibility, and muscle thickness (MTh) using constant angle long-lasting stretching. It was hypothesized that long-lasting stretching with high intensity will lead to sufficient mechanical tension to induce muscle hypertrophy and maximal strength gains. This study examined muscle cross-sectional area (MCSA) using magnetic resonance imaging (MRI). Therefore, 45 well-trained subjects (f: 17, m: 28, age: 27.7 ± 3.0 years, height: 180.8 ± 4.9 cm, mass: 80.4 ± 7.2 kg) were assigned to an intervention group (IG) that stretched the plantar flexors 6 × 10 minutes per day for 6 weeks or a control group (CG). Data analysis was performed using 2-way ANOVA. There was a significant Time × Group interaction in MVC ( p < 0.001-0.019, ƞ 2 = 0.158-0.223), flexibility ( p < 0.001, ƞ 2 = 0.338-0.446), MTh ( p = 0.002-0.013, ƞ 2 = 0.125-0.172), and MCSA ( p = 0.003-0.014, ƞ 2 = 0.143-0.197). Post hoc analysis showed significant increases in MVC ( d = 0.64-0.76), flexibility ( d = 0.85-1.12), MTh ( d = 0.53-0.6), and MCSA ( d = 0.16-0.3) in IG compared with CG, thus confirming previous results in well-trained subjects. Furthermore, this study improved the quality for the morphological examination by investigating both heads of the gastrocnemius with MRI and sonography. Because stretching can be used passively, an application in rehabilitation settings seems plausible, especially if no commonly used alternatives such as strength training are applicable.


Assuntos
Exercícios de Alongamento Muscular , Humanos , Adulto Jovem , Adulto , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Força Muscular/fisiologia
3.
Front Sports Act Living ; 6: 1345213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299024

RESUMO

Introduction: Based on the assumption of maximal strength as a basic ability, several studies show a high influence of maximum strength on jumping performance in several sport athletes. However, there is a wide range of correlations from r = 0.17-0.9 between squat 1RM and jumping performance in different sports. Additionally, there are only a few studies investigating the influence of deadlift one repetition maximum (1RM) on jumping performance. Thus, this study aimed to investigate the correlations between 1RM in the deadlift on jumping performance using the countermovement jump height (CMJ) and squat jump height (SJ) considering different sports. Methods: 103 athletes with experience in the deadlift from soccer, basketball, American football, powerlifting as well as participants from different sports without any deadlift experience (control group) were included to this study. Results: Overall statistics showed a significant moderate influence of deadlift 1RM (r = 0.301-0.472) on jumping performance. However, subgroup analysis showed no significant correlation between deadlift 1RM and jumping performance in control participants, while moderate correlations could be detected in powerlifters (r = 0.34-0.39), soccer players (r = 0.437-0.46), American football players (0.584-0.62) and high correlations in basketball players (r = 0.809-0.848) showing significant influence of type of sport on correlations between deadlift maximum strength and jumping performance. Discussion: Presented results underline movement velocity- and task specificity of strength training routines which is discussed in the light of the respective sports.

4.
J Sport Health Sci ; 13(4): 509-520, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38244921

RESUMO

BACKGROUND: Acute improvement in range of motion (ROM) is a widely reported effect of stretching and foam rolling, which is commonly explained by changes in pain threshold and/or musculotendinous stiffness. Interestingly, these effects were also reported in response to various other active and passive interventions that induce responses such as enhanced muscle temperature. Therefore, we hypothesized that acute ROM enhancements could be induced by a wide variety of interventions other than stretching or foam rolling that promote an increase in muscle temperature. METHODS: After a systematic search in PubMed, Web of Science, and SPORTDiscus databases, 38 studies comparing the effects of stretching and foam rolling with several other interventions on ROM and passive properties were included. These studies had 1134 participants in total, and the data analysis resulted in 140 effect sizes (ESs). ES calculations were performed using robust variance estimation model with R-package. RESULTS: Study quality of the included studies was classified as fair (PEDro score = 4.58) with low to moderate certainty of evidence. Results showed no significant differences in ROM (ES = 0.01, p = 0.88), stiffness (ES = 0.09, p = 0.67), or passive peak torque (ES = -0.30, p = 0.14) between stretching or foam rolling and the other identified activities. Funnel plots revealed no publication bias. CONCLUSION: Based on current literature, our results challenge the established view on stretching and foam rolling as a recommended component of warm-up programs. The lack of significant difference between interventions suggests there is no need to emphasize stretching or foam rolling to induce acute ROM, passive peak torque increases, or stiffness reductions.


Assuntos
Exercícios de Alongamento Muscular , Amplitude de Movimento Articular , Exercício de Aquecimento , Humanos , Torque , Músculo Esquelético/fisiologia
5.
Sports Med ; 53(11): 2055-2075, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37556026

RESUMO

Increasing muscle strength and cross-sectional area is of crucial importance to improve or maintain physical function in musculoskeletal rehabilitation and sports performance. Decreases in muscular performance are experienced in phases of reduced physical activity or immobilization. These decrements highlight the need for alternative, easily accessible training regimens for a sedentary population to improve rehabilitation and injury prevention routines. Commonly, muscle hypertrophy and strength increases are associated with resistance training, typically performed in a training facility. Mechanical tension, which is usually induced with resistance machines and devices, is known to be an important factor that stimulates the underlying signaling pathways to enhance protein synthesis. Findings from animal studies suggest an alternative means to induce mechanical tension to enhance protein synthesis, and therefore muscle hypertrophy by inducing high-volume stretching. Thus, this narrative review discusses mechanical tension-induced physiological adaptations and their impact on muscle hypertrophy and strength gains. Furthermore, research addressing stretch-induced hypertrophy is critically analyzed. Derived from animal research, the stretching literature exploring the impact of static stretching on morphological and functional adaptations was reviewed and critically discussed. No studies have investigated the underlying physiological mechanisms in humans yet, and thus the underlying mechanisms remain speculative and must be discussed in the light of animal research. However, studies that reported functional and morphological increases in humans commonly used stretching durations of > 30 min per session of the plantar flexors, indicating the importance of high stretching volume, if the aim is to increase muscle mass and maximum strength. Therefore, the practical applicability seems limited to settings without access to resistance training (e.g., in an immobilized state at the start of rehabilitation), as resistance training seems to be more time efficient. Nevertheless, further research is needed to generate evidence in different human populations (athletes, sedentary individuals, and rehabilitation patients) and to quantify stretching intensity.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36293831

RESUMO

Many sports injuries result in surgery and prolonged periods of immobilization, which may lead to significant atrophy accompanied by loss of maximal strength and range of motion and, therefore, a weak-leg/strong-leg ratio (as an imbalance index ∆ ) lower than 1. Consequently, there are common rehabilitation programs that aim to enhance maximal strength, muscle thickness and flexibility; however, the literature demonstrates existing strength imbalances after weeks of rehabilitation. Since no study has previously been conducted to investigate the effects of long-duration static stretch training to treat muscular imbalances, the present research aims to determine the possibility of counteracting imbalances in maximal strength and range of motion. Thirty-nine athletic participants with significant calf muscle imbalances in maximal strength and range of motion were divided into an intervention group (one-hour daily plantar flexors static stretching of the weaker leg for six weeks) and a control group to evaluate the effects on maximal strength and range of motion with extended and bent knee joint. Results show significant increases in maximal strength (d = 0.84-1.61, p < 0.001-0.005) and range of motion (d = 0.92-1.49, p < 0.001-0.002) following six weeks of static stretching. Group * time effects (p < 0.001-0.004, η² = 0.22-0.55) revealed ∆ changes in the intervention group from 0.87 to 1.03 for maximal strength and from 0.92 to 1.11 in range of motion. The results provide evidence for the use of six weeks of daily, one hour stretching to counteract muscular imbalances. Related research in clinical settings after surgery is suggested.


Assuntos
Exercícios de Alongamento Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Perna (Membro)/fisiologia , Articulação do Joelho/fisiologia , Força Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA