Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 67(13): 3975-84, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26962209

RESUMO

Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteoma
2.
Plant Cell Environ ; 38(10): 2115-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808681

RESUMO

Light-harvesting complex (LHC)-like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)-binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild-type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co-suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Oxirredutases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Oxirredutases/genética , Fenótipo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Isoformas de Proteínas
3.
Plant Mol Biol ; 77(4-5): 461-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21901528

RESUMO

Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Nitrogênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Estresse Fisiológico , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Espectrometria de Massas , Fosforilação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Processamento de Proteína Pós-Traducional , Tilacoides/metabolismo
4.
Rapid Commun Mass Spectrom ; 25(1): 184-90, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21154902

RESUMO

Oxidative and nitrosative stress leaves footprints in the plant chloroplast in the form of oxidatively modified proteins. Using a mass spectrometric approach, we identified 126 tyrosine and 12 tryptophan nitration sites in 164 nitrated proteolytic peptides, mainly from photosystem I (PSI), photosystem II (PSII), cytochrome b(6) /f and ATP-synthase complexes and 140 oxidation products of tyrosine, tryptophan, proline, phenylalanine and histidine residues. While a high number of nitration sites were found in proteins from four photosynthetic complexes indicating that the nitration belongs to one of the prominent posttranslational protein modifications in photosynthetic apparatus, amino acid oxidation products were determined mostly in PSII and to a lower extent in PSI. Exposure of plants to light stress resulted in an increased level of tyrosine and tryptophan nitration and tryptophan oxidation in proteins of PSII reaction center and the oxygen-evolving complex, as compared to low light conditions. In contrast, the level of nitration and oxidation of these amino acid residues strongly decreased for all light-harvesting proteins of PSII under the same conditions. Based on these data, we propose that oxidative modifications of proteins by reactive oxygen and nitrogen species might represent an important regulatory mechanism of protein turnover under light stress conditions, especially for PSII and its antenna proteins.


Assuntos
Arabidopsis/química , Espectrometria de Massas/métodos , Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Tilacoides/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Triptofano/química , Triptofano/metabolismo , Tirosina/química , Tirosina/metabolismo
5.
Front Plant Sci ; 8: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28167950

RESUMO

The extended superfamily of chlorophyll a/b binding proteins comprises the Light-Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to function in photoprotection or assembly of thylakoid pigment-protein complexes and are further divided into subgroups with one to three transmembrane helices. Two small One-Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels increase in response to light stress. In this study, we show that OHP1 and OHP2 are highly conserved in photosynthetic eukaryotes, but have probably evolved independently and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly, the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice versa. In both ohp1 and ohp2 mutants, the levels of numerous photosystem components were strongly reduced and photosynthetic electron transport was almost undetectable. Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon sources for growth and did not produce seeds. Interestingly, the induction of ELIP1 expression and Cu/Zn superoxide dismutase activity in low light conditions indicated that ohp1 mutants constantly suffer from photo-oxidative stress. Based on these data, we propose that OHP1 and OHP2 play an essential role in the assembly or stabilization of photosynthetic pigment-protein complexes, especially photosystem reaction centers, in the thylakoid membrane.

6.
Mar Genomics ; 28: 127-136, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27373732

RESUMO

Plastoglobules (PG) are lipophilic droplets attached to thylakoid membranes in higher plants and green algae and are implicated in prenyl lipid biosynthesis. They might also represent a central hub for integration of plastid signals under stress and therefore the adaptation of the thylakoid membrane under such conditions. In Arabidopsis thaliana, PG contain around 30 specific proteins of which Fibrillins (FBN) and Activity of bc1 complex kinases (ABC1K) represent the majority with respect to both number and protein mass. However, nothing is known about the presence of PG in most algal species, which are responsible for about 50% of global primary production. Therefore, we searched the genomes of publicly available algal genomes for components of PG and the associated functional network in order to predict their presence and potential evolutionary conservation of physiological functions. We could identify homologous sequences for core components of PG, like FBN and ABC1K, in most investigated algal species. Furthermore, proteins at central and interesting positions within the PG functional coexpression network were identified. Phylogenetic sequence analysis revealed diversity within FBN and ABC1K sequences among algal species with complex plastids of the red lineage and large differences compared with green lineage species. Two types of FBN were detected that differ in their isoelectric point which seems to correlate with subcellular localization. Subgroups of FBN were shared between many investigated species and modeling of their 3D-structure implied a conserved structure. FBN and ABC1K are essential structural and functional components of PG. Their occurrence in investigated algal species suggests presence of PG therein and functions in prenyl lipid metabolism and adaptation of the thylakoid membrane that are conserved during evolution.


Assuntos
Evolução Biológica , DNA de Algas/genética , Genoma , Plastídeos/genética , Evolução Molecular , Filogenia
7.
PLoS One ; 6(5): e20134, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625592

RESUMO

BACKGROUND: Epibenthic cyanobacteria often grow in environments where the fluctuation of light intensity and quality is extreme and frequent. Different strategies have been developed to cope with this problem depending on the distribution of cyanobacteria in the water column. PRINCIPAL FINDINGS: Here we provide an experimental proof that the light intensity plays an important role in the vertical distribution of seven, closely related, epibenthic Synechococcus spp. strains isolated from various water depths from the littoral zone of Lake Constance in Germany and cultivated under laboratory conditions. Pigment analysis revealed that the amount of chlorophyll a and total carotenoids decreased with the time of light stress exposure in three phycoerythrin-rich strains collected from 7.0 m water depth and remained low during the recovery phase. In contrast, a constant level of chlorophyll a and either constant or enhanced levels of carotenoids were assayed in phycocyanin-rich strains collected from 1.0 and 0.5 m water depths. Protein analysis revealed that while the amount of biliproteins remained constant in all strains during light stress and recovery, the amount of D1 protein from photosystem II reaction centre was strongly reduced under light stress conditions in strains from 7.0 m and 1.0 m water depth, but not in strains collected from 0.5 m depth. CONCLUSION: Based on these data we propose that light intensity, in addition to light quality, is an important selective force in the vertical distribution of Synechococcus spp. strains, depending on their genetically fixed mechanisms for photoprotection.


Assuntos
Água Doce , Luz , Synechocystis/fisiologia , Alemanha , Oxigênio/metabolismo , Synechocystis/classificação , Synechocystis/crescimento & desenvolvimento , Synechocystis/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA