Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Pathog ; 17(11): e1010068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780574

RESUMO

Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.


Assuntos
COVID-19/veterinária , COVID-19/virologia , Vison/imunologia , Vison/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Fazendas , Seguimentos , Humanos , Mutação , Faringe/virologia , Filogenia , RNA Viral , Reinfecção/virologia , Sequenciamento Completo do Genoma
2.
Emerg Infect Dis ; 27(2): 547-551, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33207152

RESUMO

Severe acute respiratory syndrome coronavirus 2 has caused a pandemic in humans. Farmed mink (Neovison vison) are also susceptible. In Denmark, this virus has spread rapidly among farmed mink, resulting in some respiratory disease. Full-length virus genome sequencing revealed novel virus variants in mink. These variants subsequently appeared within the local human community.


Assuntos
COVID-19/transmissão , Transmissão de Doença Infecciosa/veterinária , Vison/virologia , SARS-CoV-2/genética , Zoonoses Virais/transmissão , Animais , COVID-19/veterinária , COVID-19/virologia , Dinamarca/epidemiologia , Fazendas , Humanos , Zoonoses Virais/virologia
3.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699086

RESUMO

Classical swine fever virus (CSFV) contains a specific motif within the E2 glycoprotein that differs between strains of different virulence. In the highly virulent CSFV strain Koslov, this motif comprises residues S763/L764 in the polyprotein. However, L763/P764 represent the predominant alleles in published CSFV genomes. In this study, changes were introduced into the CSFV strain Koslov (here called vKos_SL) to generate modified CSFVs with substitutions at residues 763 and/or 764 (vKos_LL, vKos_SP, and vKos_LP). The properties of these mutant viruses, in comparison to those of vKos_SL, were determined in pigs. Each of the viruses was virulent and induced typical clinical signs of CSF, but the vKos_LP strain produced them significantly earlier. Full-length CSFV cDNA amplicons (12.3 kb) derived from sera of infected pigs were deep sequenced and cloned to reveal the individual haplotypes that contributed to the single-nucleotide polymorphism (SNP) profiles observed in the virus population. The SNP profiles for vKos_SL and vKos_LL displayed low-level heterogeneity across the entire genome, whereas vKos_SP and vKos_LP displayed limited diversity with a few high-frequency SNPs. This indicated that vKos_SL and vKos_LL exhibited a higher level of fitness in the host and more stability at the consensus level, whereas several consensus changes were observed in the vKos_SP and vKos_LP sequences, pointing to adaptation. For each virus, only a subset of the variants present within the virus inoculums were maintained in the infected pigs. No clear tissue-dependent quasispecies differentiation occurred within inoculated pigs; however, clear evidence for transmission bottlenecks to contact animals was observed, with subsequent loss of sequence diversity.IMPORTANCE The surface-exposed E2 protein of classical swine fever virus is required for its interaction with host cells. A short motif within this protein varies between strains of different virulence. The importance of two particular amino acid residues in determining the properties of a highly virulent strain of the virus has been analyzed. Each of the different viruses tested proved highly virulent, but one of them produced earlier, but not more severe, disease. By analyzing the virus genomes present within infected pigs, it was found that the viruses which replicated within inoculated animals were only a subset of those within the virus inoculum. Furthermore, following contact transmission, it was shown that a very restricted set of viruses had transferred between animals. There were no significant differences in the virus populations present in various tissues of the infected animals. These results indicate mechanisms of virus population change during transmission between animals.


Assuntos
Vírus da Febre Suína Clássica/genética , Peste Suína Clássica/transmissão , Peste Suína Clássica/virologia , Animais , Linhagem Celular , Peste Suína Clássica/mortalidade , Vírus da Febre Suína Clássica/classificação , Vírus da Febre Suína Clássica/patogenicidade , Vírus de DNA/genética , DNA Complementar/genética , Genoma Viral , Glicoproteínas/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , RNA Viral , Suínos , Proteínas do Envelope Viral/genética , Viremia/virologia , Virulência
4.
Euro Surveill ; 26(5)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33541485

RESUMO

In June-November 2020, SARS-CoV-2-infected mink were detected in 290 of 1,147 Danish mink farms. In North Denmark Region, 30% (324/1,092) of people found connected to mink farms tested SARS-CoV-2-PCR-positive and approximately 27% (95% confidence interval (CI): 25-30) of SARS-CoV-2-strains from humans in the community were mink-associated. Measures proved insufficient to mitigate spread. On 4 November, the government ordered culling of all Danish mink. Farmed mink constitute a potential virus reservoir challenging pandemic control.


Assuntos
Animais Selvagens/virologia , COVID-19/epidemiologia , COVID-19/veterinária , Surtos de Doenças/veterinária , Reservatórios de Doenças/veterinária , Transmissão de Doença Infecciosa/veterinária , Vison/virologia , Pandemias/veterinária , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/transmissão , Animais , COVID-19/transmissão , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Dinamarca/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Fazendas , Genes Virais , Humanos , Incidência , Reação em Cadeia da Polimerase , Saúde Pública , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , Zoonoses Virais/virologia , Sequenciamento Completo do Genoma , Zoonoses/transmissão , Zoonoses/virologia
5.
J Gen Virol ; 101(11): 1170-1181, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32857690

RESUMO

Border disease virus (BDV) envelope glycoprotein E2 is required for entry into cells and is a determinant of host tropism for sheep and pig cells. Here, we describe adaptive changes in the BDV E2 protein that modify virus replication in pig cells. To achieve this, two BDV isolates, initially collected from a pig and a sheep on the same farm, were passaged in primary sheep and pig cells in parallel with a rescued variant of the pig virus derived from a cloned full-length BDV cDNA. The pig isolate and the rescued virus shared the same amino acid sequence, but the sheep isolate differed at ten residues, including two substitutions in E2 (K771E and Y925H). During serial passage in cells, the viruses displayed clear selectivity for growth in sheep cells; only the cDNA-derived virus adapted to grow in pig cells. Sequencing revealed an amino acid substitution (Q739R) in the E2 domain DA of this rescued virus. Adaptation at the same residue (Q739K/Q739R) was also observed after passaging of the pig isolate in sheep cells. Use of reverse genetics confirmed that changing residue Q739 to R or K (each positively charged) was sufficient to achieve adaptation to pig cells. Furthermore, this change in host tropism was suppressed if Q739R was combined with K771E. Another substitution (Q728R), conferring an additional positive charge, acquired during passaging, restored the growth of the Q739R/K771E variant. Overall, this study provided evidence that specific, positively charged, residues in the E2 domain DA are crucial for pig-cell tropism of BDV.


Assuntos
Vírus da Doença da Fronteira/química , Vírus da Doença da Fronteira/crescimento & desenvolvimento , Adaptação ao Hospedeiro , Ovinos/virologia , Suínos/virologia , Proteínas Estruturais Virais/química , Adaptação Fisiológica , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Vírus da Doença da Fronteira/genética , Células Cultivadas , DNA Complementar , DNA Viral/genética , Especificidade de Hospedeiro , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Inoculações Seriadas , Proteínas Estruturais Virais/genética , Tropismo Viral
6.
Vet Sci ; 11(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393074

RESUMO

The severity of disease resulting from classical swine fever virus (CSFV) infection is determined by several factors, including virus strain and host factors. The different outcomes of experimental studies in pigs with the same strain of CSFV emphasize the need to elucidate the influence of individual factors within experimental protocols. In this study, we investigated the outcome of disease after oral and intranasal inoculation with a moderately virulent CSFV strain in young pigs. To compare the two routes of inoculation, various infection parameters were examined during a period of two weeks. While all intranasally inoculated pigs (n = 5) were directly infected, this was only the case for two out of five pigs after oral inoculation. In addition, the intranasally inoculated pigs developed a more pronounced clinical disease and pathological lesions, as well as markedly more change in hematological and immunological parameters than the orally inoculated pigs. The wide variation among the orally inoculated pigs implied that statistical evaluation was markedly impaired, leaving this route of application less suitable for comparative studies on classical swine fever. Furthermore, our study provides additional details about the immunomodulatory effects of CSFV on the kinetics of CRP, TNF-α, and leukocyte sub-populations in pigs after infection with the CSFV strain Paderborn.

7.
Pathogens ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392892

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever, an economically important disease of pigs, often with a high case fatality rate. ASFV has demonstrated low genetic diversity among isolates collected within Eurasia. To explore the influence of viral variants on clinical outcomes and infection dynamics in pigs experimentally infected with ASFV, we have designed a deep sequencing strategy. The variant analysis revealed unique SNPs at <10% frequency in several infected pigs as well as some SNPs that were found in more than one pig. In addition, a deletion of 10,487 bp (resulting in the complete loss of 21 genes) was present at a nearly 100% frequency in the ASFV DNA from one pig at position 6362-16849. This deletion was also found to be present at low levels in the virus inoculum and in two other infected pigs. The current methodology can be used for the currently circulating Eurasian ASFVs and also adapted to other ASFV strains and genotypes. Comprehensive deep sequencing is critical for following ASFV molecular evolution, especially for the identification of modifications that affect virus virulence.

8.
Viruses ; 15(10)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896910

RESUMO

African swine fever virus (ASFV) causes severe hemorrhagic disease in domestic pigs and wild boar, often with high case fatality rates. The virus replicates in the circulating cells of the monocyte-macrophage lineage and within lymphoid tissues. The infection leads to high fever and a variety of clinical signs. In this study, it was observed that ASFV infection in pigs resulted in a >1000-fold increase in the level of circulating cell-free DNA (cfDNA), derived from the nuclei of host cells in the serum. This change occurred in parallel with the increase in circulating ASFV DNA. In addition, elevated levels (about 30-fold higher) of host mitochondrial DNA (mtDNA) were detected in the serum from ASFV-infected pigs. For comparison, the release of the cellular enzyme, lactate dehydrogenase (LDH), a commonly used marker of cellular damage, was also found to be elevated during ASFV infection, but later and less consistently. The sera from pigs infected with classical swine fever virus (CSFV), which causes a clinically similar disease to ASFV, were also tested but, surprisingly, this infection did not result in the release of cfDNA, mtDNA, or LDH. It was concluded that the level of cfDNA in the serum is a sensitive host marker of virulent ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ácidos Nucleicos Livres , Suínos , Animais , Vírus da Febre Suína Africana/genética , Sus scrofa , DNA Mitocondrial
9.
Viruses ; 15(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376554

RESUMO

A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Fazendas , Lituânia , Biosseguridade , Sus scrofa , Surtos de Doenças/veterinária , Insetos
10.
Vet Res ; 43: 46, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22624592

RESUMO

The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus.In the present study we compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region.Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected with the O1K/O-UKG chimera or the field strain (O-UKG/34/2001) developed fulminant disease. Furthermore, 3 of 4 in-contact pigs exposed to the O1K/O-UKG virus died in the acute phase of infection, likely from myocardial infection. However, in the group exposed to the O1K/A-TUR chimeric virus, only 1 pig showed symptoms of disease within the time frame of the experiment (10 days). All pigs that developed clinical disease showed a high level of viral RNA in serum and infected pigs that survived the acute phase of infection developed a serotype specific antibody response. It is concluded that the capsid coding sequences are determinants of FMDV pathogenicity in pigs.


Assuntos
Proteínas do Capsídeo/genética , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , Fases de Leitura Aberta , Doenças dos Suínos/virologia , Animais , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/metabolismo , Quimera , Ensaio de Imunoadsorção Enzimática/veterinária , Febre Aftosa/patologia , Febre Aftosa/fisiopatologia , Coração/virologia , Boca/virologia , Reação em Cadeia da Polimerase/veterinária , RNA Viral/sangue , RNA Viral/genética , Distribuição Aleatória , Análise de Sequência de RNA/veterinária , Suínos , Doenças dos Suínos/patologia , Doenças dos Suínos/fisiopatologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560755

RESUMO

Porcine epidemic diarrhea virus (PEDV), belonging to the genus Alphacoronavirus, can cause serious disease in pigs of all ages, especially in suckling pigs. Differences in virulence have been observed between various strains of this virus. In this study, four pigs were inoculated with PEDV from Germany (intestine/intestinal content collected from pigs in 2016) and four pigs with PEDV from Italy (intestine/intestinal material collected from pigs in 2016). The pigs were re-inoculated with the same virus on multiple occasions to create a more robust infection and enhance the antibody responses. The clinical signs and pathological changes observed were generally mild. Two distinct peaks of virus excretion were seen in the group of pigs inoculated with the PEDV from Germany, while only one strong peak was seen for the group of pigs that received the virus from Italy. Seroconversion was seen by days 18 and 10 post-inoculation with PEDV in all surviving pigs from the groups that received the inoculums from Germany and Italy, respectively. Attempts to infect pigs with a swine enteric coronavirus (SeCoV) from Slovakia were unsuccessful, and no signs of infection were observed in the inoculated animals.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Diarreia/patologia , Fezes , Suínos
12.
Transbound Emerg Dis ; 69(6): 3858-3867, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36346271

RESUMO

African swine fever virus (ASFV) continues to spread across the world, and currently, there are no treatments or vaccines available to combat this virus. Reliable estimates of transmission parameters for ASFV are therefore needed to establish effective contingency plans. This study used data from controlled ASFV inoculations of pigs to assess the transmission parameters. Three models were developed with (binary, piecewise-linear and exponential) time-dependent levels of infectiousness based on latency periods of 3-5 days derived from the analysis of 294 ethylenediamine tetraacetic acid-stabilized blood samples originating from 16 pigs with direct and 10 pigs with indirect contact to 8 inoculated pigs. The models were evaluated for three different discrete latency periods of infection. The likelihood ratio test showed that a binary model had an equally good fit for a latency period of 4 or 5 days as the piecewise-linear and exponential model. However, for a latency period of 3 days, the piecewise-linear and exponential models had the best fit. The modelling was done in discrete time as testing was conducted on specific days. The main contribution of this study is the estimation of ASFV genotype II transmission through the air in a confined space. The estimated transmission parameters via air are not much lower than for direct contact between pigs. The estimated parameters should be useful for future simulations of control measures against ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Genótipo
13.
Viruses ; 14(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36298701

RESUMO

African swine fever virus (ASFV) has become a global threat to the pig production industry and has caused enormous economic losses in many countries in recent years. Peripheral blood mononuclear cells (PBMCs) from pigs infected with ASFV not only express ASFV genes (almost 200 in number) but have altered patterns of host gene expression as well. Both up- and down-regulation of host cell gene expression can be followed using RNAseq on poly(A)+ mRNAs harvested from the PBMCs of pigs collected at different times post-infection. Consistent with the time course of changes in viral gene expression, only few and limited changes in host gene expression were detected at 3 days post-infection (dpi), but by 6 dpi, marked changes in the expression of over 1300 host genes were apparent. This was co-incident with the major increase in viral gene expression. The majority of the changes in host gene expression were up-regulation, but many down-regulated genes were also identified. The patterns of changes in gene expression within the PBMCs detected by RNAseq were similar in each of the four infected pigs. Furthermore, changes in the expression of about twenty selected host genes, known to be important in host defence and inflammatory responses, were confirmed using high-throughput microfluidic qPCR assays.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Leucócitos Mononucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro/metabolismo , Transcrição Gênica
14.
Viruses ; 14(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35891368

RESUMO

African swine fever is an important viral disease of wild and domestic pigs. To gain further knowledge of the properties of the currently circulating African swine fever virus (ASFV), experimental infections of young pigs (approximately 8 weeks of age) and pregnant sows (infected at about 100 days of gestation) with the genotype II ASFV Georgia/2007 were performed. The inoculated young pigs developed typical clinical signs of the disease and the infection was transmitted (usually within 3-4 days) to all of the "in contact" animals that shared the same pen. Furthermore, typical pathogical lesions for ASFV infection were found at necropsy. Inoculation of pregnant sows with the same virus also produced rapid onset of disease from post-infection day three; two of the three sows died suddenly on post-infection day five, while the third was euthanized on the same day for animal welfare reasons. Following necropsy, the presence of ASFV DNA was detected in tonsils, spleen and lymph nodes of some of the fetuses, but the levels of viral DNA were much lower than in these tissues from the sows. Thus, only limited transplacental transmission occurred during the course of this experiment. These studies contribute towards further understanding about the spread of this important viral disease in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Animais , DNA Viral , Feminino , Genótipo , Gravidez , Sus scrofa , Suínos
15.
Pathogens ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678395

RESUMO

Insect production offers a sustainable source of nutrients for livestock. This comes with a risk for transmission of pathogens from the insects into the livestock sector, including viruses causing serious diseases, such as African swine fever virus (ASFV), classical swine fever virus and foot-and-mouth disease virus. ASFV is known to survive for a long time within animal meat and byproducts. Therefore, we conducted experimental exposure studies of insects to ASFV using larvae of two key insect species produced for food and feed, the mealworm; Tenebrio molitor, and the black soldier fly, Hermetia illucens. The larvae were exposed to ASFV POL/2015/Podlaskie, via oral uptake of serum or spleen material from ASFV-infected pigs. Using qPCR, the amounts of viral DNA present immediately after exposure varied from ~104.7 to 107.2 genome copies per insect. ASFV DNA was detectable in the larvae of H. illucens for up to 3 days post exposure and in T. molitor larvae for up to 9 days post exposure. To assess the presence of infectious virus within the larvae and with this, the risk of virus transmission via oral consumption, pigs were fed cakes containing larvae exposed to ASFV. Pigs that consumed 50 T. molitor or 50 H. illucens virus-exposed larvae did not become infected with ASFV. Thus, it appears, that in our experimental setting, the risk of ASFV transmission via consumption of unprocessed insect larvae, used as feed, is low.

16.
Viruses ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835139

RESUMO

African swine fever virus (ASFV) has become widespread in Europe, Asia and elsewhere, thereby causing extensive economic losses. The viral genome includes nearly 200 genes, but their expression within infected pigs has not been well characterized previously. In this study, four pigs were infected with a genotype II strain (ASFV POL/2015/Podlaskie); blood samples were collected before inoculation and at both 3 and 6 days later. During this period, a range of clinical signs of infection became apparent in the pigs. From the blood, peripheral blood mononuclear cells (PBMCs) were isolated. The transcription of the ASFV genes was determined using RNAseq on poly(A)+ mRNAs isolated from these cells. Only very low levels of virus transcription were detected in the PBMCs at 3 days post-inoculation (dpi) but, at 6 dpi, extensive transcription was apparent. This was co-incident with a large increase in the level of ASFV DNA within these cells. The pattern of the virus gene expression was very reproducible between the individual pigs. Many highly expressed genes have undefined roles. Surprisingly, some genes with key roles in virus replication were expressed at only low levels. As the functions of individual genes are identified, information about their expression becomes important for understanding their contribution to virus biology.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/virologia , Genoma Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Regulação Viral da Expressão Gênica , Leucócitos Mononucleares , Masculino , Suínos
17.
Front Microbiol ; 12: 698944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248922

RESUMO

In addition to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit to animals that include hamsters, cats, dogs, mink, ferrets, tigers, lions, cynomolgus macaques, rhesus macaques, and treeshrew. Among these, mink are particularly susceptible. Indeed, 10 countries in Europe and North America reported SARS-CoV-2 infection among mink on fur farms. In Denmark, SARS-CoV-2 spread rapidly among mink farms and spilled-over back into humans, acquiring mutations/deletions with unknown consequences for virulence and antigenicity. Here we describe a mink-associated SARS-CoV-2 variant (Cluster 5) characterized by 11 amino acid substitutions and four amino acid deletions relative to Wuhan-Hu-1. Temporal virus titration, together with genomic and subgenomic viral RNA quantitation, demonstrated a modest in vitro fitness attenuation of the Cluster 5 virus in the Vero-E6 cell line. Potential alterations in antigenicity conferred by amino acid changes in the spike protein that include three substitutions (Y453F, I692V, and M1229I) and a loss of two amino acid residues 69 and 70 (ΔH69/V70), were evaluated in a virus microneutralization assay. Compared to a reference strain, the Cluster 5 variant showed reduced neutralization in a proportion of convalescent human COVID-19 samples. The findings underscore the need for active surveillance SARS-CoV-2 infection and virus evolution in susceptible animal hosts.

18.
Animals (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445704

RESUMO

SARS-CoV-2 infection is the cause of COVID-19 in humans. In April 2020, SARS-CoV-2 infection in farmed mink (Neovision vision) occurred in the Netherlands. The first outbreaks in Denmark were detected in June 2020 in three farms. A steep increase in the number of infected farms occurred from September and onwards. Here, we describe prevalence data collected from 215 infected mink farms to characterize spread and impact of disease in infected farms. In one third of the farms, no clinical signs were observed. In farms with clinical signs, decreased feed intake, increased mortality and respiratory symptoms were most frequently observed, during a limited time period (median of 11 days). In 65% and 69% of farms, virus and sero-conversion, respectively, were detected in 100% of sampled animals at the first sampling. SARS-CoV-2 was detected, at low levels, in air samples collected close to the mink, on mink fur, on flies, on the foot of a seagull, and in gutter water, but not in feed. Some dogs and cats from infected farms tested positive for the virus. Chickens, rabbits, and horses sampled on a few farms, and wildlife sampled in the vicinity of the infected farms did not test positive for SARS-CoV-2. Thus, mink are highly susceptible to infection by SARS-CoV-2, but routes of transmission between farms, other than by direct human contact, are unclear.

19.
Transbound Emerg Dis ; 67(4): 1472-1484, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32150785

RESUMO

Following its introduction into Georgia in 2007, African swine fever virus (ASFV) has become widespread on the European continent and in Asia. In many cases, the exact route of introduction into domestic pig herds cannot be determined, but most introductions are attributed to indirect virus transmission. In this review, we describe knowledge gained about different matrices that may allow introduction of the virus into pig herds. These matrices include uncooked pig meat, processed pig-derived products, feed, matrices contaminated with the virus and blood-feeding invertebrates. Knowledge gaps still exist, and both field studies and laboratory research are needed to enhance understanding of the risks for ASFV introductions, especially via virus-contaminated materials, including bedding and feed, and via blood-feeding, flying insects. Knowledge obtained from such studies can be applied to epidemiological risk assessments for the different transmission routes. Such assessments can be utilized to help predict the most effective biosecurity and control strategies.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/transmissão , Doenças dos Suínos/transmissão , Febre Suína Africana/virologia , Animais , Ásia , Europa (Continente) , Risco , Sus scrofa , Suínos , Doenças dos Suínos/virologia
20.
J Virol Methods ; 270: 120-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31095976

RESUMO

Foot-and-mouth disease (FMD) remains a globally important disease but there have only been occasional recent outbreaks in Europe, e.g. in the U.K. in 2001, U.K. 2007 and Bulgaria 2010/2011. However, this infection still poses a threat to Europe as the disease occurs close to its borders and incursions can occur through importation of contaminated animal products and through the air. To deal with a suspected outbreak, fast sampling, transportation and accurate laboratory diagnosis are critical; testing for FMDV is normally performed on epithelium samples or serum. Assessment of the use of stabilized blood in assays for FMDV RNA is useful as this sample material can be prepared on site for safe transportation and rapid analysis at the laboratory. Such samples are also collected for diagnosis of other diseases giving similar clinical signs. Testing serum and EDTA-stabilized blood samples from FMDV-infected cattle and pigs, using real time quantitative RT-PCR assays, yielded similar results. However, detection of FMDV RNA was less sensitive (about 10-fold) when using EDTA-stabilized blood compared to serum. Thus, diagnosis of FMD can be achieved using EDTA-stabilized blood samples in an outbreak situation on a herd basis, but serum is preferred at the single animal level for optimal sensitivity.


Assuntos
Doenças dos Bovinos/diagnóstico , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças dos Suínos/diagnóstico , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Surtos de Doenças/veterinária , Ácido Edético , Europa (Continente)/epidemiologia , Febre Aftosa/epidemiologia , RNA Viral/genética , Sensibilidade e Especificidade , Manejo de Espécimes , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA