Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 94(45): 15604-15612, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315456

RESUMO

Understanding how environmental factors affect the bioelectrode efficiency and stability is of uttermost importance to develop high-performance bioelectrochemical devices. By coupling fluorescence confocal microscopy in situ to electrochemistry, this work focuses on the influence of the ionic strength on electro-enzymatic catalysis. In this context, the 4 e-/4 H+ reduction of O2 into water by the bilirubin oxidase from Myrothecium verrucaria (MvBOD) is considered as a model. The effects of salt concentration on the enzyme activity and stability were probed by enzymatic assays performed in homogeneous catalysis conditions and monitored by UV-vis absorption spectroscopy. They were also investigated in heterogeneous catalysis conditions by electrochemical measurements with MvBOD immobilized at a graphite microelectrode. We demonstrate that the catalytic activity and stability of the enzyme both in solution and in the immobilized state at the bioelectrode were conserved with an electrolyte concentration of up to 0.5 M, both in a buffered and a non-buffered electrolyte. Relying on this, we used fluorescence confocal laser scanning microscopy coupled in situ to electrochemistry to explore the local pH of the electrolyte at the vicinity of the electrode surface at various ionic strengths and for several overpotentials. 3D proton depletion profiles generated by the interfacial electro-enzymatic reaction were recorded in the presence of a pH-sensitive fluorophore. These concentration profiles were shown to contract with increasing ionic strength, thus highlighting the need for a minimal electrolyte concentration to ensure availability of charged substrates at the electrode surface during electro-enzymatic experiments.


Assuntos
Eletrodos , Eletroquímica , Catálise , Concentração Osmolar , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
2.
Chem Rev ; 119(16): 9509-9558, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31243999

RESUMO

The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.


Assuntos
Fontes de Energia Bioelétrica , Enzimas/química , Animais , Humanos , Modelos Teóricos , Oxirredução
3.
Angew Chem Int Ed Engl ; 60(8): 3974-3978, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215801

RESUMO

De Novo metalloprotein design assesses the relationship between metal active site architecture and catalytic reactivity. Herein, we use an α-helical scaffold to control the iron coordination geometry when a heme cofactor is allowed to bind to either histidine or cysteine ligands, within a single artificial protein. Consequently, we uncovered a reversible pH-induced switch of the heme axial ligation within this simplified scaffold. Characterization of the specific heme coordination modes was done by using UV/Vis and Electron Paramagnetic Resonance spectroscopies. The penta- or hexa-coordinate thiolate heme (9≤pH≤11) and the penta-coordinate imidazole heme (6≤pH≤8.5) reproduces well the heme ligation in chloroperoxidases or cyt P450 monooxygenases and peroxidases, respectively. The stability of heme coordination upon ferric/ferrous redox cycling is a crucial property of the construct. At basic pHs, the thiolate mini-heme protein can catalyze O2 reduction when adsorbed onto a pyrolytic graphite electrode.


Assuntos
Cisteína/metabolismo , Heme/metabolismo , Histidina/metabolismo , Metaloproteínas/metabolismo , Sequência de Aminoácidos , Catálise , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Histidina/química , Concentração de Íons de Hidrogênio , Ferro/química , Metaloproteínas/química , Oxirredução , Oxigênio/química , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice
4.
J Am Chem Soc ; 142(6): 3222-3230, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31999113

RESUMO

A precisely localized enzyme cascade was constructed by integrating two sequential enzymes, glucoamylase (GA) and glucose oxidase (GOx), on a yeast cell surface through an a-agglutinin receptor as the anchoring motif with cohesin-dockerin interaction. The overall catalytic activities of the combinant strains were significantly dependent on the assembly method, enzyme molecular size, enzyme order, and enzyme stoichiometry. The combinant strain with GA-DocC initially bound scaffoldin prior to GOx-DocT exhibited a higher overall reaction rate. The highest overall reaction rate (29.28 ± 1.15 nmol H2O2 min-1mL-1) was achieved when GA/GOx ratio was 2:1 with enzyme order: yeast-GA-GOx-GA, 4-fold enhancement compared to free enzyme mixture. Further, the first example of starch/O2 enzymatic biofuel cells (EBFCs) using codisplayed GA/GOx based bioanodes were assembled, demonstrating excellent direct biomass-to-electricity conversion. The optimized EBFC registered an open-circuit voltage of 0.78 V and maximum power density (Pmax) of 36.1 ± 2.5 µW cm-2, significantly higher than the Pmax for other starch/O2 EBFCs reported so far. Therefore, this work highlights rational organization of sequential enzymes for enhanced biocatalytic activity and stability, which would find applications in biocatalysis, enzymatic biofuel cells, biosensing, and bioelectro-synthesis.


Assuntos
Biocatálise , Fontes de Energia Bioelétrica , Enzimas Imobilizadas/metabolismo , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucose Oxidase/metabolismo , Saccharomyces cerevisiae/metabolismo , Estabilidade Enzimática , Cinética
5.
J Am Chem Soc ; 142(3): 1394-1405, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31865707

RESUMO

Multicopper oxidases (MCOs) catalyze the oxidation of a variety of substrates while reducing oxygen into water through four copper atoms. As an additional feature, some MCOs display an enhanced activity in solution in the presence of Cu2+. This is the case of the hyperthermophilic laccase HB27 from Thermus thermophilus, the physiologic role of which is unknown. As a particular feature, this enzyme presents a methionine rich domain proposed to be involved in copper interaction. In this work, laccase from T. thermophilus was produced in E. coli, and the effect of Cu2+ on its electroactivity at carbon nanotube modified electrodes was investigated. Direct O2 electroreduction is strongly dictated by carbon nanotube surface chemistry in accordance with the enzyme dipole moment. In the presence of Cu2+, an additional low potential cathodic wave occurs, which was never described earlier. Analysis of this wave as a function of Cu2+ availability allows us to attribute this wave to a cuprous oxidase activity displayed by the laccase and induced by copper binding close to the Cu T1 center. A mutant lacking the methionine-rich hairpin domain characteristic of this laccase conserves its copper activity suggesting a different site of copper binding. This study provides new insight into the copper effect in methionine rich MCOs and highlights the utility of the electrochemical method to investigate cuprous oxidase activity and to understand the physiological role of these MCOs.


Assuntos
Cobre/metabolismo , Eletrodos , Lacase/metabolismo , Oxigênio/metabolismo , Thermus thermophilus/metabolismo , Oxirredução
6.
Anal Chem ; 92(10): 7249-7256, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298094

RESUMO

Getting information about the fate of immobilized enzymes and the evolution of their environment during turnover is a mandatory step toward bioelectrode optimization for effective use in biodevices. We demonstrate here the proof-of-principle visual characterization of the reactivity at an enzymatic electrode thanks to fluorescence confocal laser scanning microscopy (FCLSM) implemented in situ during the electrochemical experiment. The enzymatic O2 reduction involves proton-coupled electron transfers. Therefore, fluorescence variation of a pH-dependent fluorescent dye in the electrode vicinity enables reaction visualization. Simultaneous collection of electrochemical and fluorescence signals gives valuable space- and time-resolved information. Once the technical challenges of such a coupling are overcome, in situ FCLSM affords a unique way to explore reactivity at the electrode surface and in the electrolyte volume. Unexpected features are observed, especially the pH evolution of the enzyme environment, which is also indicated by a characteristic concentration profile within the diffusion layer. This coupled approach also gives access to a cartography of the electrode surface response (i.e., heterogeneity), which cannot be obtained solely by an electrochemical means.


Assuntos
Técnicas Eletroquímicas , Hibridização in Situ Fluorescente , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxigênio/metabolismo , Eletrodos , Hypocreales/enzimologia , Microscopia Confocal , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Propriedades de Superfície
7.
J Am Chem Soc ; 141(28): 11093-11102, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31274287

RESUMO

Cytochrome c oxidases (CcOs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O2 makes them attractive biocatalysts for technological devices in which O2 concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CcO of the acidophilic bacterium Acidithiobacillus ferrooxidans is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface. The entrapment of the CcO in a network of hydrophobic carbon nanofibers permits a direct electrochemical communication between the enzyme and the electrode. We demonstrate that the CcO displays a µM affinity for O2 and reduces O2 at exceptionally high electrode potentials in the range of +700 to +540 mV vs NHE over a pH range of 4-6. The kinetics of interactions between the enzyme and its physiological partners are fully quantified. Based on these results, an electron transfer pathway allowing O2 reduction in the acidic metabolic chain is proposed.


Assuntos
Acidithiobacillus/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Acidithiobacillus/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxigênio/química
8.
Biochim Biophys Acta Bioenerg ; 1858(5): 351-359, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214520

RESUMO

Mononuclear cupredoxins contain a type 1 copper center with a trigonal or tetragonal geometry usually maintained by four ligands, a cystein, two histidines and a methionine. The recent discovery of new members of this family with unusual properties demonstrates, however, the versatility of this class of proteins. Changes in their ligand set lead to drastic variation in their metal site geometry and in the resulting spectroscopic and redox features. In our work, we report the identification of the copper ligands in the recently discovered cupredoxin AcoP. We show that even though AcoP possesses a classical copper ligand set, it has a highly perturbed copper center. In depth studies of mutant's properties suggest a high degree of constraint existing in the copper center of the wild type protein and even the addition of exogenous ligands does not lead to the reconstitution of the initial copper center. Not only the chemical nature of the axial ligand but also constraints brought by its covalent binding to the protein backbone might be critical to maintain a green copper site with high redox potential. This work illustrates the importance of experimentally dissecting the molecular diversity of cupredoxins to determine the molecular determinants responsible for their copper center geometry and redox potential.


Assuntos
Acidithiobacillus/metabolismo , Azurina/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Mutação , Acidithiobacillus/genética , Azurina/química , Azurina/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Dicroísmo Circular , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Genótipo , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução , Fenótipo , Ligação Proteica , Conformação Proteica , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Temperatura
9.
Angew Chem Int Ed Engl ; 56(27): 7774-7778, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28489268

RESUMO

Self-assembled redox protein nanowires have been exploited as efficient electron shuttles for an oxygen-tolerant hydrogenase. An intra/inter-protein electron transfer chain has been achieved between the iron-sulfur centers of rubredoxin and the FeS cluster of [NiFe] hydrogenases. [NiFe] Hydrogenases entrapped in the intricated matrix of metalloprotein nanowires achieve a stable, mediated bioelectrocatalytic oxidation of H2 at low-overpotential.


Assuntos
Hidrogenase/química , Nanofios/química , Oxigênio/química , Domínio Catalítico , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Hidrogênio/química , Hidrogenase/metabolismo , Mathanococcus/metabolismo , Oxirredução , Oxigênio/metabolismo , Podospora/química , Podospora/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo
10.
J Org Chem ; 79(14): 6615-26, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24968285

RESUMO

In this work, a series of α-phenyl-N-tert-butyl nitrones bearing one, two, or three substituents on the tert-butyl group was synthesized. Cyclic voltammetry (CV) was used to investigate their electrochemical properties and showed a more pronounced substituent effect for oxidation than for reduction. Rate constants of superoxide radical (O2(•-)) reactions with nitrones were determined using a UV-vis stopped-flow method, and phenyl radical (Ph(•)) trapping rate constants were measured by EPR spectroscopy. The effect of N-tert-butyl substitution on the charge density and electron density localization of the nitronyl carbon as well as on the free energies of nitrone reactivity with O2(•-) and HO2(•) were computationally rationalized at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level of theory. Theoretical and experimental data showed that the rates of the reaction correlate with the nitronyl carbon charge density, suggesting a nucleophilic nature of O2(•-) and Ph(•) addition to the nitronyl carbon atom. Finally, the substituent effect was investigated in cell cultures exposed to hydrogen peroxide and a correlation between the cell viability and the oxidation potential of the nitrones was observed. Through a combination of computational methodologies and experimental methods, new insights into the reactivity of free radicals with nitrone derivatives have been proposed.


Assuntos
Óxidos de Nitrogênio/síntese química , Conformação Molecular , Óxidos de Nitrogênio/química , Teoria Quântica
11.
Phys Chem Chem Phys ; 16(4): 1366-78, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24296569

RESUMO

The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells.


Assuntos
Aquifoliaceae/enzimologia , Fontes de Energia Bioelétrica , Carbono/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Nanofibras/química , Aquifoliaceae/metabolismo , Biocatálise , Carbono/química , Hidrogênio/química , Hidrogenase/química , Oxirredução , Porosidade , Propriedades de Superfície
12.
Phys Chem Chem Phys ; 16(23): 11318-22, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24789038

RESUMO

[NiFe] hydrogenases from Aquifex aeolicus (AaHase) and Desulfovibrio fructosovorans (DfHase) have been mainly studied to characterize physiological electron transfer processes, or to develop biotechnological devices such as biofuel cells. In this context, it remains difficult to control the orientation of AaHases on electrodes to achieve a fast interfacial electron transfer. Here, we study the electrostatic properties of these two proteins based on microsecond-long molecular dynamics simulations that we compare to voltammetry experiments. Our calculations show weak values and large fluctuations of the dipole direction in AaHase compared to DfHase, enabling the AaHase to absorb on both negatively and positively charged electrodes, with an orientation distribution that induces a spread in electron transfer rates. Moreover, we discuss the role of the transmembrane helix of AaHase and show that it does not substantially impact the general features of the dipole moment.


Assuntos
Bactérias/enzimologia , Hidrogenase/química , Eletrodos , Hidrogenase/metabolismo , Simulação de Dinâmica Molecular , Eletricidade Estática
13.
J Biol Chem ; 287(24): 19936-48, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22496367

RESUMO

How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Citoplasma/enzimologia , Metabolismo Energético/fisiologia , Enxofre/metabolismo , Tiossulfato Sulfurtransferase/metabolismo
14.
Phys Chem Chem Phys ; 15(39): 16463-7, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23999766

RESUMO

We report the effect of UV-Vis light on the membrane-bound [Ni-Fe] hydrogenase from Aquifex aeolicus under turnover conditions. Using electrochemistry, we show a potential dependent light sensitivity and propose that a light-induced structural change of the [Ni-Fe] active site is related to an enhanced reactivation of the hydrogenase under illumination at high potentials.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Hidrogenase/química , Hidrogenase/metabolismo , Luz , Oxigênio/química , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Temperatura Alta , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Oxigênio/metabolismo
15.
Biosens Bioelectron ; 225: 115106, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738732

RESUMO

The hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H2 sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild conditions. This study aims at evaluating the performance of an electrochemical sensor based on carbon nanomaterials with immobilised hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus for H2 detection. The effect of various parameters, including the surface chemistry, dispersion degree and amount of deposited carbon nanotubes, enzyme concentration, temperature and pH on the H2 oxidation are investigated. Although the highest catalytic response is obtained at a temperature around 60 °C, a noticeable current can be obtained at room temperature with a low amount of protein less than 1 µM. An original pulse-strategy to ensure H2 diffusion to the bioelectrode allows to reach H2 sensitivity of 4 µA cm-2 per % H2 and a linear range between 1 and 20%. Sustainable hydrogen was then produced through dark fermentation performed by a synthetic bacterial consortium in an up-flow anaerobic packed-bed bioreactor. Thanks to the outstanding properties of the A. aeolicus hydrogenase, the biosensor was demonstrated to be quite insensitive to CO2 and H2S produced as the main co-products of the bioreactor. Finally, the bioelectrode was used for the in situ measurement of H2 produced in the bioreactor in steady-state.


Assuntos
Técnicas Biossensoriais , Hidrogenase , Nanotubos de Carbono , Fermentação , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogênio/química , Reatores Biológicos , Oxirredução , Bactérias/metabolismo , Eletrodos
16.
Life (Basel) ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36983784

RESUMO

Aquifex aeolicus is a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO2 via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of acetyl-CoA to pyruvate and of succinyl-CoA to 2-oxoglutarate, two energetically unfavorable reactions that require a strong reduction potential. We have confirmed, by biochemistry and proteomics, that A. aeolicus possesses a pentameric version of these enzyme complexes ((αßγδε)2) and that they are highly abundant in the cell. In addition, we have purified and characterized, from the soluble fraction of A. aeolicus, two low redox potential and oxygen-stable [4Fe-4S] ferredoxins (Fd6 and Fd7, E0 = -440 and -460 mV, respectively) and shown that they can physically interact and exchange electrons with both PFOR and OGOR, suggesting that they could be the physiological electron donors of the system in vivo. Shotgun proteomics indicated that all the enzymes assumed to be involved in the rTCA cycle are produced in the A. aeolicus cells. A number of additional enzymes, previously suggested to be part of a putative partial Wood-Ljungdahl pathway used for the synthesis of serine and glycine from CO2 were identified by mass spectrometry, but their abundance in the cell seems to be much lower than that of the rTCA cycle. Their possible involvement in carbon assimilation is discussed.

17.
Biochem Soc Trans ; 40(6): 1324-9, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176476

RESUMO

Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years. Studies have shown the presence of a functional supercomplex that spans the outer and the inner membranes and allows a direct electron transfer from the extracellular Fe2+ ions to the inner membrane cytochrome c oxidase. Iron induces the expression of two operons encoding proteins implicated in this complex as well as in the regeneration of the reducing power. Most of these are metalloproteins that have been characterized biochemically, structurally and biophysically. For some of them, the molecular basis of their adaptation to the periplasmic acidic environment has been described. Modifications in the metal surroundings have been highlighted for cytochrome c and rusticyanin, whereas, for the cytochrome c oxidase, an additional partner that maintains its stability and activity has been demonstrated recently.


Assuntos
Acidithiobacillus/metabolismo , Compostos Ferrosos/metabolismo , Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Concentração de Íons de Hidrogênio , Oxirredução , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/fisiologia
18.
Biochimie ; 182: 228-237, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33535124

RESUMO

Thermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Lacase/química , Mutação , Thermus thermophilus/enzimologia , Proteínas de Bactérias/genética , Lacase/genética
19.
Metallomics ; 13(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34791351

RESUMO

The importance of copper resistance pathways in pathogenic bacteria is now well recognized, since macrophages use copper to fight bacterial infections. Additionally, considering the increase of antibiotic resistance, growing attention is given to the antimicrobial properties of copper. It is of primary importance to understand how bacteria deal with copper. The Cu-resistant cuproprotein CopI is present in many human bacterial pathogens and environmental bacteria and crucial under microaerobiosis (conditions for most pathogens to thrive within their host). Hence, understanding its mechanism of function is essential. CopI proteins share conserved histidine, cysteine, and methionine residues that could be ligands for different copper binding sites, among which the cupredoxin center could be involved in the protein function. Here, we demonstrated that Vibrio cholerae and Pseudomonas aeruginosa CopI restore the Cu-resistant phenotype in the Rubrivivax gelatinosus ΔcopI mutant. We identified that Cys125 (ligand in the cupredoxin center) and conserved histidines and methionines are essential for R. gelatinosus CopI (RgCopI) function. We also performed spectroscopic analyses of the purified RgCopI protein and showed that it is a green cupredoxin able to bind a maximum of three Cu(II) ions: (i) a green Cu site (CuT1.5), (ii) a type 2 Cu binding site (T2) located in the N-terminal region, and (iii) a third site with a yet unidentified location. CopI is therefore one member of the poorly described CuT1.5 center cupredoxin family. It is unique, since it is a single-domain cupredoxin with more than one Cu site involved in Cu resistance.


Assuntos
Azurina/metabolismo , Cobre/toxicidade , Periplasma/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Vibrio cholerae/metabolismo
20.
J Am Chem Soc ; 132(20): 6991-7004, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20441192

RESUMO

The membrane-bound hydrogenase (Hase I) of the hyperthermophilic bacterium Aquifex aeolicus belongs to an intriguing class of redox enzymes that show enhanced thermostability and oxygen tolerance. Protein film electrochemistry is employed here to portray the interaction of Hase I with molecular oxygen and obtain an overall picture of the catalytic activity. Fourier transform infrared (FTIR) spectroscopy integrated with in situ electrochemistry is used to identify structural details of the [NiFe] site and the intermediate states involved in its redox chemistry. We found that the active site coordination is similar to that of standard hydrogenases, with a conserved Fe(CN)(2)CO moiety. However, only four catalytic intermediates could be detected; these correspond structurally to the Ni-B, Ni-SI(a), Ni-C, and Ni-R states of standard hydrogenases. The Ni-SI/Ni-C and Ni-C/Ni-R midpoint potentials are approximately 100 mV more positive than those observed in mesophilic hydrogenases, which may be the reason that A. aeolicus Hase I is more suitable as a catalyst for H(2) oxidation than production. Protein film electrochemistry shows that oxygen inhibits the enzyme by reacting at the active site to form a single species (Ni-B); the same inactive state is obtained under oxidizing, anaerobic conditions. The mechanism of anaerobic inactivation and reactivation in A. aeolicus Hase I is similar to that in standard hydrogenases. However, the reactivation of the former is more than 2 orders of magnitude faster despite the fact that reduction of Ni-B is not thermodynamically more favorable. A scheme for the enzymatic mechanism of A. aeolicus Hase I is presented, and the results are discussed in relation to the proposed models of oxygen tolerance.


Assuntos
Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/enzimologia , Hidrogenase/metabolismo , Oxigênio/farmacologia , Anaerobiose , Biocatálise , Domínio Catalítico , Eletroquímica , Eletrodos , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrogenase/química , Cinética , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Potenciometria , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA